このアイテムのアクセス数: 132
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
qt_167.pdf | 665.08 kB | Adobe PDF | 見る/開く |
タイトル: | Drinfeld centers of fusion categories arising from generalized Haagerup subfactors |
著者: | Grossman, Pinhas Izumi, Masaki ![]() ![]() |
著者名の別形: | 泉, 正己 |
キーワード: | 46L37 18D10 Subfactors fusion categories Cuntz algebras. |
発行日: | 27-Jan-2023 |
出版者: | European Mathematical Society - EMS - Publishing House GmbH |
誌名: | Quantum Topology |
巻: | 13 |
号: | 4 |
開始ページ: | 593 |
終了ページ: | 668 |
抄録: | We consider generalized Haagerup categories such that 1 ⊕ X admits a Q-system for every non-invertible simple object X. We show that in such a category, the group of order two invertible objects has size at most four. We describe the simple objects of the Drinfeld center and give partial formulas for the modular data. We compute the remaining corner of the modular data for several examples and make conjectures about the general case.We also consider several types of equivariantizations and de-equivariantizations of generalized Haagerup categories and describe their Drinfeld centers. In particular, we compute the modular data for the Drinfeld centers of a number of examples of fusion categories arising in the classification of small-index subfactors: the Asaeda–Haagerup subfactor; the 3[ℤ4] and 3[ℤ2×ℤ2] subfactors; the 2D2 subfactor; and the 4442 subfactor. The results suggest the possibility of several new infinite families of quadratic categories. A description and generalization of the modular data associated to these families in terms of pairs of metric groups is taken up in the accompanying paper [Comm. Math. Phys. 380 (2020), 1091–1150]. |
著作権等: | ©2023 European Mathematical Society Published by EMS Press This work is licensed under a CC BY 4.0 license |
URI: | http://hdl.handle.net/2433/284476 |
DOI(出版社版): | 10.4171/qt/167 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス