このアイテムのアクセス数: 103
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
LCSYS.2022.3227452.pdf | 1.12 MB | Adobe PDF | 見る/開く |
タイトル: | Observability Gramian for Bayesian Inference in Nonlinear Systems With Its Industrial Application |
著者: | Kunwoo, Lee Umezu, Yusuke Konno, Kaiki Kashima, Kenji ![]() ![]() ![]() |
著者名の別形: | 加嶋, 健司 |
キーワード: | Bayesian Fisher information Bayesian state estimation data-driven oveservability analysis nonlinear systems observability Gramian |
発行日: | 2023 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | IEEE Control Systems Letters |
巻: | 7 |
開始ページ: | 871 |
終了ページ: | 876 |
抄録: | In this letter, we present a novel (empirical) observability Gramian for nonlinear stochastic systems in the light of Bayesian inference. First, we define our observability Gramian, which we refer to as the estimability Gramian, based on the relation to the so-called Bayesian Fisher Information Matrix for initial state estimation. Then, we study the fundamental properties of an empirical version of the estimability Gramian. The practical usefulness of the proposed framework is examined through its application to a parameter and initial state estimation in a natural gas engine cylinder. |
著作権等: | This work is licensed under a Creative Commons Attribution 4.0 License. |
URI: | http://hdl.handle.net/2433/284654 |
DOI(出版社版): | 10.1109/LCSYS.2022.3227452 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス