このアイテムのアクセス数: 119

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.automatica.2023.110980.pdf1.38 MBAdobe PDF見る/開く
タイトル: Entropic model predictive optimal transport over dynamical systems
著者: Ito, Kaito
Kashima, Kenji  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2963-2584 (unconfirmed)
著者名の別形: 伊藤, 海斗
加嶋, 健司
キーワード: Optimal control
Optimal transport
Model predictive control
Entropy regularization
発行日: Jun-2023
出版者: Elsevier BV
誌名: Automatica
巻: 152
論文番号: 110980
抄録: We consider the optimal control problem of steering an agent population to a desired distribution over an infinite horizon. This is an optimal transport problem over dynamical systems, which is challenging due to its high computational cost. In this paper, by using entropy regularization, we propose Sinkhorn MPC, which is a dynamical transport algorithm integrating model predictive control (MPC) and the so-called Sinkhorn algorithm. The notable feature of the proposed method is that it achieves cost-effective transport in real time by performing control and transport planning simultaneously, which is illustrated in numerical examples. Moreover, under some assumption on iterations of the Sinkhorn algorithm integrated in MPC, we reveal the global convergence property for Sinkhorn MPC thanks to the entropy regularization. Furthermore, focusing on a quadratic control cost, without the aforementioned assumption we show the ultimate boundedness and the local asymptotic stability for Sinkhorn MPC.
著作権等: © 2023 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
URI: http://hdl.handle.net/2433/284655
DOI(出版社版): 10.1016/j.automatica.2023.110980
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons