このアイテムのアクセス数: 119
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.automatica.2023.110980.pdf | 1.38 MB | Adobe PDF | 見る/開く |
タイトル: | Entropic model predictive optimal transport over dynamical systems |
著者: | Ito, Kaito Kashima, Kenji ![]() ![]() ![]() |
著者名の別形: | 伊藤, 海斗 加嶋, 健司 |
キーワード: | Optimal control Optimal transport Model predictive control Entropy regularization |
発行日: | Jun-2023 |
出版者: | Elsevier BV |
誌名: | Automatica |
巻: | 152 |
論文番号: | 110980 |
抄録: | We consider the optimal control problem of steering an agent population to a desired distribution over an infinite horizon. This is an optimal transport problem over dynamical systems, which is challenging due to its high computational cost. In this paper, by using entropy regularization, we propose Sinkhorn MPC, which is a dynamical transport algorithm integrating model predictive control (MPC) and the so-called Sinkhorn algorithm. The notable feature of the proposed method is that it achieves cost-effective transport in real time by performing control and transport planning simultaneously, which is illustrated in numerical examples. Moreover, under some assumption on iterations of the Sinkhorn algorithm integrated in MPC, we reveal the global convergence property for Sinkhorn MPC thanks to the entropy regularization. Furthermore, focusing on a quadratic control cost, without the aforementioned assumption we show the ultimate boundedness and the local asymptotic stability for Sinkhorn MPC. |
著作権等: | © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. |
URI: | http://hdl.handle.net/2433/284655 |
DOI(出版社版): | 10.1016/j.automatica.2023.110980 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス