このアイテムのアクセス数: 84

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.physletb.2023.138022.pdf481.43 kBAdobe PDF見る/開く
タイトル: Coupled vector Gauss-Bonnet theories and hairy black holes
著者: Aoki, Katsuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-9616-096X (unconfirmed)
Tsujikawa, Shinji
著者名の別形: 青木, 勝輝
発行日: 10-Aug-2023
出版者: Elsevier BV
誌名: Physics Letters B
巻: 843
論文番号: 138022
抄録: We study vector-tensor theories in which a 4-dimensional vector field Aμ is coupled to a vector quantity Jμ, which is expressed in terms of Aμ and a metric tensor gμυ. The divergence of Jμ is equivalent to a Gauss-Bonnet (GB) term. We show that an interacting Lagrangian of the form f(X)AμJμ, where f is an arbitrary function of X = -(1/2)AμAμ, belongs to a scheme of beyond generalized Proca theories. For f(X) = α = constant, this interacting Lagrangian reduces to a particular class of generalized Proca theories. We apply the latter coupling to a static and spherically symmetric vacuum configuration by incorporating the Einstein-Hilbert term, Maxwell scalar, and vector mass term ηX (η is a constant). Under an expansion of the small coupling constant α with η ≠ 0, we derive hairy black hole solutions endowed with nonvanishing temporal and radial vector field profiles. The asymptotic properties of solutions around the horizon and at spatial infinity are different from those of hairy black holes present in scalar-GB theories. We also show that black hole solutions without the vector mass term, i.e., η = 0, are prone to ghost instability of odd-parity perturbations.
著作権等: © 2023 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license. Funded by SCOAP3.
URI: http://hdl.handle.net/2433/284867
DOI(出版社版): 10.1016/j.physletb.2023.138022
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons