このアイテムのアクセス数: 106

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
zamm.202000221.pdf1.18 MBAdobe PDF見る/開く
タイトル: Multiple scattering of flexural waves on Mindlin plates with circular scatterers
著者: Kinoshita, Yohei
Biwa, Shiro  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-7278-0462 (unconfirmed)
Wang, Zuowei
著者名の別形: 木下, 陽平
琵琶, 志朗
キーワード: flexural waves
mindlin plate theory
multiple scattering
wave function expansion
発行日: Aug-2021
出版者: Wiley
誌名: ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik
巻: 101
号: 8
論文番号: e202000221
抄録: The multiple scattering of flexural waves on an elastic plate with circular scatterers is analyzed in the frequency domain based on the Mindlin plate theory accounting for the rotary inertia and shear deformation of the plate. To this purpose, a semi-analytical numerical method is formulated as an extension of the previous study based on the Kirchhoff plate theory. It consists of expressing the flexural wave field in terms of the superposition of the wave function expansion, and determining the expansion coefficients by a collocation technique. As demonstrative examples, the transmission of a plane flexural wave across a square array of circular through-thickness holes or thin-plate inclusions is analyzed using the proposed method. The comparison between the results based on the Mindlin and Kirchhoff theories is shown for the case of multiple holes. The analysis shows that the transmission amplitude of the flexural wave is reduced at certain frequencies due to the Bragg reflection by the inclusions. In the case of thin-plate inclusions, the resonance of the inclusions also brings about a sharp decrease of the transmission amplitude.
著作権等: This is the peer reviewed version of the following article: [Kinoshita, Y, Biwa, S, Wang, Z. Multiple scattering of flexural waves on Mindlin plates with circular scatterers. Z Angew Math Mech. 2021; 101:e202000221.], which has been published in final form at https://doi.org/10.1002/zamm.202000221. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
The full-text file will be made open to the public on 16 March 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/284931
DOI(出版社版): 10.1002/zamm.202000221
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。