このアイテムのアクセス数: 51

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s40623-023-01770-2.pdf3.9 MBAdobe PDF見る/開く
タイトル: Estimation of source parameters using a non-Gaussian probability density function in a Bayesian framework
著者: Yoshimitsu, Nana  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-8198-6649 (unconfirmed)
Maeda, Takuto
Sei, Tomonari
著者名の別形: 吉光, 奈奈
キーワード: MCMC
Stress drop
Source parameter
発行日: 8-Mar-2023
出版者: Springer Nature
誌名: Earth, Planets and Space
巻: 75
論文番号: 33
抄録: Source parameters represent key factors in seismic hazard assessment and understanding source physics of earthquakes. In addition to conventional grid search approach to estimate source parameters, other approaches have been used recently. This study uses a Bayesian framework, the Markov Chain Monte Carlo method, to estimate source parameters including uncertainty assessment with inter-parameter correlations. The Bayesian calculation method requires to select a probability density function for estimating likelihood and the function can infuence calculation reliability. While most studies use a normal distribution, we select an F-distribution due to its suitability for the data in ratio form. Using synthetic data and real observations from induced earthquakes in Oklahoma, we compare the calculation steps for spectral ftting and source parameter estimation using the two probability density functions. The sampling distribution and estimated parameters support the assumption that the F-distribution is well-suited for spectral ratio analysis. Results further show that a sampling distribution can efectively reveal trade-ofs and uncertainty among parameters. Sampling distribution trends also reveal data quality criteria that can be used to refne results.
著作権等: © The Author(s) 2023.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
URI: http://hdl.handle.net/2433/285059
DOI(出版社版): 10.1186/s40623-023-01770-2
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons