このアイテムのアクセス数: 82
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s41467-023-41260-3.pdf | 18.86 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Akiyama, Reiko | en |
dc.contributor.author | Goto, Takao | en |
dc.contributor.author | Tameshige, Toshiaki | en |
dc.contributor.author | Sugisaka, Jiro | en |
dc.contributor.author | Kuroki, Ken | en |
dc.contributor.author | Sun, Jianqiang | en |
dc.contributor.author | Akita, Junichi | en |
dc.contributor.author | Hatakeyama, Masaomi | en |
dc.contributor.author | Kudoh, Hiroshi | en |
dc.contributor.author | Tanaka, Kenta | en |
dc.contributor.author | Tonouchi, Aya | en |
dc.contributor.author | Shimahara, Yuki | en |
dc.contributor.author | Sese, Jun | en |
dc.contributor.author | Kutsuna, Natsumaro | en |
dc.contributor.author | Shimizu-Inatsugi, Rie | en |
dc.contributor.author | Shimizu, Kentaro K. | en |
dc.contributor.alternative | 秋山, 玲子 | ja |
dc.contributor.alternative | 後藤, 隆男 | ja |
dc.contributor.alternative | 爲重, 才覚 | ja |
dc.contributor.alternative | 杉阪, 次郎 | ja |
dc.contributor.alternative | 黒木, 健 | ja |
dc.contributor.alternative | 孫, 建強 | ja |
dc.contributor.alternative | 秋田, 純一 | ja |
dc.contributor.alternative | 畠山, 剛臣 | ja |
dc.contributor.alternative | 工藤, 洋 | ja |
dc.contributor.alternative | 田中, 健太 | ja |
dc.contributor.alternative | 登内, 亜弥 | ja |
dc.contributor.alternative | 島原, 佑基 | ja |
dc.contributor.alternative | 瀬々, 潤 | ja |
dc.contributor.alternative | 朽名, 夏麿 | ja |
dc.contributor.alternative | 清水(稲継), 理恵 | ja |
dc.contributor.alternative | 清水, 健太郎 | ja |
dc.date.accessioned | 2023-10-02T06:41:26Z | - |
dc.date.available | 2023-10-02T06:41:26Z | - |
dc.date.issued | 2023-09-22 | - |
dc.identifier.uri | http://hdl.handle.net/2433/285248 | - |
dc.description | 画像解析AIを利用して植物の環境応答解析システムを開発 --牧野富太郎博士の命名した植物の頑健性を解明--. 京都大学プレスリリース. 2023-09-28. | ja |
dc.description.abstract | Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed “in natura”. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) 2023 | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Data acquisition | en |
dc.subject | Imaging | en |
dc.subject | Plant evolution | en |
dc.title | Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Nature Communications | en |
dc.identifier.volume | 14 | - |
dc.relation.doi | 10.1038/s41467-023-41260-3 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 5792 | - |
dc.address | Department of Evolutionary Biology and Environmental Studies, University of Zurich | en |
dc.address | Research and Development Division, LPIXEL Inc. | en |
dc.address | Kihara Institute for Biological Research (KIBR), Yokohama City University; Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) | en |
dc.address | Kihara Institute for Biological Research (KIBR), Yokohama City University; Center for Ecological Research, Kyoto University | en |
dc.address | Department of Biological Sciences, Graduate School of Science, The University of Tokyo | en |
dc.address | Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization | en |
dc.address | Department of Electric and Computer Engineering, Kanazawa University | en |
dc.address | Department of Evolutionary Biology and Environmental Studies, University of Zurich; Functional Genomics Center Zurich | en |
dc.address | Center for Ecological Research, Kyoto University | en |
dc.address | Sugadaira Research Station, Mountain Science Center, University of Tsukuba | en |
dc.address | Research and Development Division, LPIXEL Inc. | en |
dc.address | Research and Development Division, LPIXEL Inc. | en |
dc.address | Artificial Intelligence Research Center, AIST; Humanome Lab, Inc.; AIST-Tokyo Tech RWBC-OIL | en |
dc.address | Research and Development Division, LPIXEL Inc. | en |
dc.address | Department of Evolutionary Biology and Environmental Studies, University of Zurich | en |
dc.address | Department of Evolutionary Biology and Environmental Studies, University of Zurich; Kihara Institute for Biological Research (KIBR), Yokohama City University | en |
dc.identifier.pmid | 37737204 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2023-09-28-0 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 22H02316 | - |
datacite.awardNumber | 17H06990 | - |
datacite.awardNumber | 21H04977 | - |
datacite.awardNumber | 22H05179 | - |
datacite.awardNumber | 22K21352 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22H02316/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H06990/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H04977/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-22H05179/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K21352/ | - |
dc.identifier.eissn | 2041-1723 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | パンコムギの品種間シス制御の違いを利用した新規対立遺伝子の単離 | ja |
jpcoar.awardTitle | 葉の形態の温度応答機構と多様性の解明 | ja |
jpcoar.awardTitle | 変動環境下での頑健な応答を支える長期クロマチン記憶 | ja |
jpcoar.awardTitle | 受粉時における自殖性と他殖性の質的・量的バランスを制御する分子機構と選択圧 | ja |
jpcoar.awardTitle | 植物生殖の鍵分子ネットワーク | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス