このアイテムのアクセス数: 60

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ACCESS.2023.3264855.pdf1.17 MBAdobe PDF見る/開く
タイトル: Pay Attention via Quantization: Enhancing Explainability of Neural Networks via Quantized Activation
著者: Tashiro, Yuma
Awano, Hiromitsu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-9288-471X (unconfirmed)
著者名の別形: 粟野, 皓光
キーワード: Self-driving
explainable AI
attention
quantized neural network
発行日: 5-Apr-2023
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Access
巻: 11
開始ページ: 34431
終了ページ: 34439
抄録: Modern deep learning algorithms comprise highly complex artificial neural networks, making it extremely difficult for humans to track their inference processes. As the social implementation of deep learning progresses, the human and economic losses caused by inference errors are becoming increasingly problematic, making it necessary to develop methods to explain the basis for the decisions of deep learning algorithms. Although an attention mechanism-based method to visualize the regions that contribute to steering angle prediction in an automated driving task has been proposed, its explanatory capability is low. In this paper, we focus on the fact that the importance of each bit in the activation value of a network is biased (i.e., the sign and exponent bits are weighted more heavily than the mantissa bits), which has been overlooked in previous studies. Specifically, this paper quantizes network activations, encouraging important information to be aggregated to the sign bit. Further, we introduce an attention mechanism restricted to the sign bit to improve the explanatory power. Our numerical experiment using the Udacity dataset revealed that the proposed method achieves a 1.14× higher area under curve (AUC) in terms of the deletion metric.
著作権等: This work is licensed under a Creative Commons Attribution 4.0 License
URI: http://hdl.handle.net/2433/285273
DOI(出版社版): 10.1109/ACCESS.2023.3264855
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons