ダウンロード数: 122

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ETS.202310_26(4).0006.pdf875.76 kBAdobe PDF見る/開く
タイトル: Towards Predictable Process and Consequence Attributes of Data-Driven Group Work: Primary Analysis for Assisting Teachers with Automatic Group Formation
著者: LIANG, Changhao
HORIKOSHI, Izumi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-1447-1156 (unconfirmed)
MAJUMDAR, Rwitajit
FLANAGAN, Brendan  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-7644-997X (unconfirmed)
OGATA, Hiroaki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-5216-1576 (unconfirmed)
著者名の別形: 梁, 昌豪
堀越, 泉
緒方, 広明
キーワード: Group work indicator
GLOBE
Correlation analysis
Group formation
CSCL
Group work prediction
Teacher assistance
発行日: Oct-2023
出版者: Educational Technology & Society
誌名: Educational Technology & Society (ET&S)
巻: 26
号: 4
開始ページ: 90
終了ページ: 103
抄録: Data-driven platforms with rich data and learning analytics applications provide immense opportunities to support collaborative learning such as algorithmic group formation systems based on learning logs. However, teachers can still get overwhelmed since they have to manually set the parameters to create groups and it takes time to understand the meaning of each indicator. Therefore, it is imperative to explore predictive indicators for algorithmic group formation to release teachers from the dilemma with explainable group formation indicators and recommended settings based on group work purposes. Employing learning logs of group work from a reading-based university course, this study examines how learner indicators from different dimensions before the group work connect to the subsequent group work processes and consequences attributes through correlation analysis. Results find that the reading engagement and previous peer ratings can reveal individual achievement of the group work, and a homogeneous grouping strategy based on reading annotations and previous group work experience can predict desirable group performance for this learning context. In addition, it also proposes the potential of automatic group formation with recommended parameter settings that leverage the results of predictive indicators.
著作権等: This article of Educational Technology & Society is available under Creative Commons CC-BY-NC-ND 3.0 license.
URI: http://hdl.handle.net/2433/285539
DOI(出版社版): 10.30191/ETS.202310_26(4).0006
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons