このアイテムのアクセス数: 122

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s42003-023-05594-4.pdf2.8 MBAdobe PDF見る/開く
タイトル: RENGE infers gene regulatory networks using time-series single-cell RNA-seq data with CRISPR perturbations
著者: Ishikawa, Masato
Sugino, Seiichi
Masuda, Yoshie
Tarumoto, Yusuke  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-6652-9618 (unconfirmed)
Seto, Yusuke
Taniyama, Nobuko
Wagai, Fumi
Yamauchi, Yuhei
Kojima, Yasuhiro
Kiryu, Hisanori
Yusa, Kosuke
Eiraku, Mototsugu  kyouindb  KAKEN_id
Mochizuki, Atsushi
著者名の別形: 石川, 雅人
杉野, 成一
増田, 芳恵
樽本, 雄介
瀬戸, 裕介
谷山, 暢子
和穎, 文
山内, 悠平
小嶋, 泰弘
木立, 尚孝
遊佐, 宏介
永樂, 元次
望月, 敦史
キーワード: Dynamical systems
Gene regulation
Gene regulatory networks
Regulatory networks
発行日: 28-Dec-2023
出版者: Springer Nature
誌名: Communications Biology
巻: 6
論文番号: 1290
抄録: Single-cell RNA-seq analysis coupled with CRISPR-based perturbation has enabled the inference of gene regulatory networks with causal relationships. However, a snapshot of single-cell CRISPR data may not lead to an accurate inference, since a gene knockout can influence multi-layered downstream over time. Here, we developed RENGE, a computational method that infers gene regulatory networks using a time-series single-cell CRISPR dataset. RENGE models the propagation process of the effects elicited by a gene knockout on its regulatory network. It can distinguish between direct and indirect regulations, which allows for the inference of regulations by genes that are not knocked out. RENGE therefore outperforms current methods in the accuracy of inferring gene regulatory networks. When used on a dataset we derived from human-induced pluripotent stem cells, RENGE yielded a network consistent with multiple databases and literature. Accurate inference of gene regulatory networks by RENGE would enable the identification of key factors for various biological systems.
記述: 摂動に基づく遺伝子制御ネットワーク推定 --数理モデルによる自動決定--. 京都大学プレスリリース. 2024-01-04.
Gene expression technology set to semi-automation: KyotoU develops RENGE to infer gene regulatory networks efficiently and accurately. 京都大学プレスリリース. 2024-03-14.
著作権等: © The Author(s) 2023
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
URI: http://hdl.handle.net/2433/286528
DOI(出版社版): 10.1038/s42003-023-05594-4
PubMed ID: 38155269
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2024-01-04
https://www.kyoto-u.ac.jp/en/research-news/2024-03-14
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons