このアイテムのアクセス数: 148

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
PhysRevC.109.014312.pdf3.58 MBAdobe PDF見る/開く
タイトル: Nonempirical shape dynamics of heavy nuclei with multitask deep learning
著者: Hizawa, N.
Hagino, K.
著者名の別形: 樋沢, 規宏
萩野, 浩一
キーワード: Fission
Nuclear shapes and moments
Collective dynamics
Convolutional neural networks
Deep learning
Machine learning
Nuclear Physics
発行日: Jan-2024
出版者: American Physical Society (APS)
誌名: Physical Review C
巻: 109
号: 1
論文番号: 014312
抄録: A microscopic description of nuclear fission represents one of the most challenging problems in nuclear theory. While phenomenological coordinates, such as multipole moments, have often been employed to describe fission, it is not obvious whether these parameters fully reflect the shape dynamics of interest. We here propose a novel method to extract collective coordinates, which are free from phenomenology, based on multitask deep learning in conjunction with density functional theory (DFT). To this end, we first introduce randomly generated external fields to a Skyrme energy density functional (EDF) and construct a set of nuclear number densities and binding energies for deformed states of ²³⁶U around the ground state. By training a neural network on such a dataset with a combination of an autoencoder and supervised learning, we successfully identify a two-dimensional latent variables that accurately reproduce both the energies and the densities of the original Skyrme-EDF calculations, within a mean absolute error of 113 keV for the energies. In contrast, when multipole moments are used as latent variables for training in constructing the decoders, we find that the training data for the binding energies are reproduced only within 2 MeV. This implies that conventional multipole moments do not provide fully adequate variables for a shape dynamics of heavy nuclei.
著作権等: ©2024 American Physical Society
URI: http://hdl.handle.net/2433/286724
DOI(出版社版): 10.1103/PhysRevC.109.014312
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。