このアイテムのアクセス数: 53

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
v1_2023.findings-eacl.195.pdf287.22 kBAdobe PDF見る/開く
タイトル: Relation Extraction with Weighted Contrastive Pre-training on Distant Supervision
著者: Wan, Zhen
Cheng, Fei  kyouindb  KAKEN_id
Liu, Qianying
Mao, Zhuoyuan
Song, Haiyue
Kurohashi, Sadao  kyouindb  KAKEN_id
著者名の別形: 万, 振
程, 飛
劉, 倩瑩
毛, 卓遠
宋, 海越
黒橋, 禎夫
発行日: May-2023
出版者: Association for Computational Linguistics
誌名: Findings of the Association for Computational Linguistics: EACL 2023
開始ページ: 2580
終了ページ: 2585
抄録: Contrastive pre-training on distant supervision has shown remarkable effectiveness in improving supervised relation extraction tasks. However, the existing methods ignore the intrinsic noise of distant supervision during the pre-training stage. In this paper, we propose a weighted contrastive learning method by leveraging the supervised data to estimate the reliability of pre-training instances and explicitly reduce the effect of noise. Experimental results on three supervised datasets demonstrate the advantages of our proposed weighted contrastive learning approach compared to two state-of-the-art non-weighted baselines. Our code and models are available at: https://github.com/YukinoWan/WCL.
記述: 17th Conference of the European Chapter of the Association for Computational Linguistics, May 2-6, 2023
著作権等: ©2023 Association for Computational Linguistics
ACL materials are Copyright © 1963–2024 ACL; other materials are copyrighted by their respective copyright holders. Materials prior to 2016 here are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License. Permission is granted to make copies for the purposes of teaching and research. Materials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License.
URI: http://hdl.handle.net/2433/286922
DOI(出版社版): 10.18653/v1/2023.findings-eacl.195
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons