このアイテムのアクセス数: 53
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
v1_2023.findings-eacl.195.pdf | 287.22 kB | Adobe PDF | 見る/開く |
タイトル: | Relation Extraction with Weighted Contrastive Pre-training on Distant Supervision |
著者: | Wan, Zhen Cheng, Fei ![]() ![]() Liu, Qianying Mao, Zhuoyuan Song, Haiyue Kurohashi, Sadao ![]() ![]() |
著者名の別形: | 万, 振 程, 飛 劉, 倩瑩 毛, 卓遠 宋, 海越 黒橋, 禎夫 |
発行日: | May-2023 |
出版者: | Association for Computational Linguistics |
誌名: | Findings of the Association for Computational Linguistics: EACL 2023 |
開始ページ: | 2580 |
終了ページ: | 2585 |
抄録: | Contrastive pre-training on distant supervision has shown remarkable effectiveness in improving supervised relation extraction tasks. However, the existing methods ignore the intrinsic noise of distant supervision during the pre-training stage. In this paper, we propose a weighted contrastive learning method by leveraging the supervised data to estimate the reliability of pre-training instances and explicitly reduce the effect of noise. Experimental results on three supervised datasets demonstrate the advantages of our proposed weighted contrastive learning approach compared to two state-of-the-art non-weighted baselines. Our code and models are available at: https://github.com/YukinoWan/WCL. |
記述: | 17th Conference of the European Chapter of the Association for Computational Linguistics, May 2-6, 2023 |
著作権等: | ©2023 Association for Computational Linguistics ACL materials are Copyright © 1963–2024 ACL; other materials are copyrighted by their respective copyright holders. Materials prior to 2016 here are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License. Permission is granted to make copies for the purposes of teaching and research. Materials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License. |
URI: | http://hdl.handle.net/2433/286922 |
DOI(出版社版): | 10.18653/v1/2023.findings-eacl.195 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス