ダウンロード数: 0

このアイテムのファイル:
このアイテムは一定期間後に公開されます。
公開日については,アイテム画面の「著作権等」でご確認ください。
タイトル: GCMC kernel for analyzing the pore size distribution of porous carbons based on a simplified slit-pore model considering surface energetic heterogeneity
著者: Hiraide, Shotaro  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-7853-1619 (unconfirmed)
Yamamoto, Kohei
Tanaka, Hideki
Nakai, Kazuyuki
Watanabe, Satoshi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-5058-4337 (unconfirmed)
Miyahara, Minoru T.
著者名の別形: 平出, 翔太郎
山本, 康平
渡邉, 哲
宮原, 稔
キーワード: Pore size distribution
Surface roughness
Kernel
Molecular simulation
Porous carbon
発行日: Nov-2023
出版者: Springer Nature
誌名: Adsorption
巻: 29
号: 7-8
開始ページ: 387
終了ページ: 399
抄録: For porous carbons, which typically have hierarchical structures, the pore size distribution (PSD) is one of the most important characteristics and is currently evaluated by using kernel fitting methods represented by non-local density functional theory. Herein, we present new kernels for N₂ and Ar adsorption at 77 K and 87 K, respectively, derived from Monte Carlo (MC) simulations based on a carbon slit-pore model that considers energetic heterogeneity due to surface roughness. The model consists of a locally scaled Lennard–Jones (LJ) 10-4 potential and Steele’s 10-4-3 potential, and the scaling factors of the LJ 10-4 potential are assumed to follow a normal distribution that mimics the adsorption behavior on real carbon black. In contrast to our previous MC kernel based on Steele’s 10-4-3 potential, the local isotherms of the new kernel did not show a steep increase due to adsorption layer formation. Despite the improved fit for adsorption isotherms, PSDs obtained from the proposed kernel unfortunately show a non-negligible valley around 1 nm, which is a major artifact of the kernel fitting approach. A careful comparison of the smooth and rough surface models indicated that the definitive cause of the artifact lies not in the formation of monolayers, which was believed so far, but rather in the pore-filling behavior, which provides a major clue for constructing a completely artifact-free kernel based on molecular simulations.
著作権等: This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s10450-023-00418-7
The full-text file will be made open to the public on 24 October 2024 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/287161
DOI(出版社版): 10.1007/s10450-023-00418-7
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。