このアイテムのアクセス数: 76
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
978-3-031-20212-4_18.pdf | 542.21 kB | Adobe PDF | 見る/開く |
タイトル: | Improvement of Deep Learning Technology to Create 3D Model of Fluid Art |
著者: | Hung, Mai Cong Trang, Mai Xuan Yamada, Akihiro Tosa, Naoko Nakatsu, Ryohei |
著者名の別形: | 土佐, 尚子 中津, 良平 |
キーワード: | fluid art Sound of Ikebana 3D reconstruction differentiable rendering network CycleGAN |
発行日: | 2022 |
出版者: | Springer Nature |
誌名: | Entertainment Computing – ICEC 2022 |
開始ページ: | 227 |
終了ページ: | 237 |
抄録: | Art is an essential part of the entertainment. As 3D entertainment such as 3D games is a trend, it is an exciting topic how to create 3D artworks from 2D artworks. In this work, we investigate the 3D reconstruction problem of the artwork called “Sound of Ikebana, ” which is created by shooting fluid phenomena using a high-speed camera and can create organic, sophisticated, and complex forms. Firstly, we used the Phase Only Correlation method to capture the artwork’s point cloud based on the images captured by multiple high-speed cameras. Then we create a 3D model by a deep learning-based approach from the 2D Sound of Ikebana images. Our result shows that we can apply deep learning techniques to improve the reconstruction of 3D modeling from 2D images with highly complicated forms. |
記述: | Lecture Notes in Computer Science book series (LNCS, volume 13477) 21st IFIP TC 14 International Conference, ICEC 2022, Bremen, Germany, November 1–3, 2022, Proceedings |
著作権等: | This is a post-peer-review, pre-copyedit version of an article published in 'Entertainment Computing - ICEC 2022'. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-20212-4_18 The full-text file will be made open to the public on 24 October 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving' This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/287622 |
DOI(出版社版): | 10.1007/978-3-031-20212-4_18 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。