ダウンロード数: 14

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
5.0201154.pdf6.11 MBAdobe PDF見る/開く
タイトル: Small multimodal thermometry with detonation-created multi-color centers in detonation nanodiamond
著者: So, Frederick T.-K.
Hariki, Nene
Nemoto, Masaya
Shames, Alexander I.
Liu, Ming
Tsurui, Akihiko
Yoshikawa, Taro
Makino, Yuto
Ohori, Masanao
Fujiwara, Masanori
Herbschleb, Ernst David
Morioka, Naoya  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-8007-2087 (unconfirmed)
Ohki, Izuru  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-0667-5936 (unconfirmed)
Shirakawa, Masahiro
Igarashi, Ryuji
Nishikawa, Masahiro
Mizuochi, Norikazu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-3099-3210 (unconfirmed)
著者名の別形: 張木, 音々
根本,  雅也
大堀, 真尚
藤原, 正規
森岡, 直也
白川, 昌宏
五十嵐, 龍治
水落, 憲和
キーワード: Temperature metrology
Color center laser spectroscopy
Crystallographic defects
Diamond
Electron paramagnetic resonance spectroscopy
Fluorescence,
Materials treatment
Optically detected magnetic resonance
Nanomaterials
Biosensors
発行日: May-2024
出版者: AIP Publishing
誌名: APL Materials
巻: 12
号: 5
論文番号: 051102
抄録: Detonation nanodiamond (DND) is the smallest class of diamond nanocrystal capable of hosting various color centers with a size akin to molecular pores. Their negatively charged nitrogen-vacancy center (NV⁻) is a versatile tool for sensing a wide range of physical and even chemical parameters at the nanoscale. The NV⁻ is, therefore, attracting interest as the smallest quantum sensor in biological research. Nonetheless, recent NV⁻ enhancement in DND has yet to yield sufficient fluorescence per particle, leading to efforts to incorporate other group-IV color centers into DND. An example is adding a silicon dopant to the explosive mixture to create negatively charged silicon-vacancy centers (SiV⁻). In this paper, we report on efficient observation (∼50% of randomly selected spots) of the characteristic optically detected magnetic resonance (ODMR) NV⁻ signal in silicon-doped DND (Si-DND) subjected to boiling acid surface cleaning. The NV⁻ concentration is estimated by continuous-wave electron spin resonance spectroscopy to be 0.35 ppm without the NV⁻ enrichment process. A temperature sensitivity of 0.36 K/√HZ in an NV⁻ ensemble inside an aggregate of Si-DND is achieved via the ODMR-based technique. Transmission electron microscopy survey reveals that the Si-DNDs core sizes are ∼11.2 nm, the smallest among the nanodiamond’s temperature sensitivity studies. Furthermore, temperature sensing using both SiV⁻ (all-optical technique) and NV⁻ (ODMR-based technique) in the same confocal volume is demonstrated, showing Si-DND’s multimodal temperature sensing capability. The results of the study thereby pave a path for multi-color and multimodal biosensors and for decoupling the detected electrical field and temperature effects on the NV⁻ center.
記述: 微小ナノダイヤモンド量子センサで安定的に温度計測実現--細胞内などの微小領域での量子センシングに期待--.京都大学プレスリリース. 2024-05-16.
著作権等: © 2024 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
URI: http://hdl.handle.net/2433/289128
DOI(出版社版): 10.1063/5.0201154
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2024-05-16-0
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons