このアイテムのアクセス数: 79

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
hr_uhae114.pdf1.12 MBAdobe PDF見る/開く
タイトル: Comparative transcriptome and functional analyses provide insights into the key factors regulating shoot regeneration in highbush blueberry
著者: Omori, Masafumi  kyouindb  KAKEN_id
Yamane, Hisayo  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-9044-7863 (unconfirmed)
Tao, Ryutaro  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-7811-5789 (unconfirmed)
著者名の別形: 大森, 真史
山根, 久代
田尾, 龍太郎
発行日: Jun-2024
出版者: Oxford University Press (OUP)
誌名: Horticulture Research
巻: 11
号: 6
論文番号: uhae114
抄録: Establishing an efficient plant regeneration system is a crucial prerequisite for genetic engineering technology in plants. However, the regeneration rate exhibits considerable variability among genotypes, and the key factors underlying shoot regeneration capacity remain largely elusive. Blueberry leaf explants cultured on a medium rich in cytokinins exhibit direct shoot organogenesis without prominent callus formation, which holds promise for expediting genetic transformation while minimizing somatic mutations during culture. The objective of this study is to unravel the molecular and genetic determinants that govern cultivar-specific shoot regeneration potential in highbush blueberry (Vaccinium corymbosum L.). We conducted comparative transcriptome analysis using two highbush blueberry genotypes: `Blue Muffin' (`BM') displaying a high regeneration rate (>80%) and `O'Neal' (`ON') exhibiting a low regeneration rate (<10%). The findings revealed differential expression of numerous auxin-related genes; notably, `BM' exhibited higher expression of auxin signaling genes compared to `ON'. Among blueberry orthologs of transcription factors involved in meristem formation in Arabidopsis, expression of VcENHANCER OF SHOOT REGENERATION (VcESR), VcWUSCHEL (VcWUS), and VcCUP-SHAPED COTYLEDON 2.1 were significantly higher in `BM' relative to `ON'. Exogenous application of auxin promoted regeneration, as well as VcESR and VcWUS expression, whereas inhibition of auxin biosynthesis yielded the opposite effects. Overexpression of VcESR in `BM’ promoted shoot regeneration under phytohormone-free conditions by activating the expression of cytokinin- and auxin-related genes. These findings provide new insights into the molecular mechanisms underlying blueberry regeneration and have practical implications for enhancing plant regeneration and transformation techniques.
著作権等: ©The Author(s) 2024. Published by Oxford University Press on behalf of Nanjing Agricultural University. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/2433/290231
DOI(出版社版): 10.1093/hr/uhae114
PubMed ID: 38919558
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons