このアイテムのアクセス数: 89

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.bpsgos.2024.100314.pdf2.47 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKyuragi, Yusukeen
dc.contributor.authorOishi, Naoyaen
dc.contributor.authorHatakoshi, Momokoen
dc.contributor.authorHirano, Jinichien
dc.contributor.authorNoda, Takamasaen
dc.contributor.authorYoshihara, Yujiroen
dc.contributor.authorIto, Yurien
dc.contributor.authorIgarashi, Hiroyukien
dc.contributor.authorMiyata, Junen
dc.contributor.authorTakahashi, Kentoen
dc.contributor.authorKamiya, Keien
dc.contributor.authorMatsumoto, Junyaen
dc.contributor.authorOkada, Tomohisaen
dc.contributor.authorFushimi, Yasutakaen
dc.contributor.authorNakagome, Kazuyukien
dc.contributor.authorMimura, Masaruen
dc.contributor.authorMurai, Toshiyaen
dc.contributor.authorSuwa, Taroen
dc.contributor.alternative久良木, 悠介ja
dc.contributor.alternative大石, 直也ja
dc.contributor.alternative波多腰, 桃子ja
dc.contributor.alternative吉原, 雄二郎ja
dc.contributor.alternative伊藤, 有里ja
dc.contributor.alternative五十嵐, 裕幸ja
dc.contributor.alternative宮田, 淳ja
dc.contributor.alternative高橋, 賢人ja
dc.contributor.alternative岡田, 知久ja
dc.contributor.alternative伏見, 育崇ja
dc.contributor.alternative村井, 俊哉ja
dc.contributor.alternative諏訪, 太朗ja
dc.date.accessioned2024-11-11T01:08:01Z-
dc.date.available2024-11-11T01:08:01Z-
dc.date.issued2024-07-
dc.identifier.urihttp://hdl.handle.net/2433/290232-
dc.description.abstractBackground: The habenula is involved in the pathophysiology of depression. However, its small structure limits the accuracy of segmentation methods, and the findings regarding its volume have been inconsistent. This study aimed to create a highly accurate habenula segmentation model using deep learning, test its generalizability to clinical magnetic resonance imaging, and examine differences between healthy participants and patients with depression. Methods: This multicenter study included 382 participants (patients with depression: N = 234, women 47.0%; healthy participants: N = 148, women 37.8%). A 3-dimensional residual U-Net was used to create a habenula segmentation model on 3T magnetic resonance images. The reproducibility and generalizability of the predictive model were tested on various validation cohorts. Thereafter, differences between the habenula volume of healthy participants and that of patients with depression were examined. Results: A Dice coefficient of 86.6% was achieved in the derivation cohort. The test-retest dataset showed a mean absolute percentage error of 6.66, indicating sufficiently high reproducibility. A Dice coefficient of >80% was achieved for datasets with different imaging conditions, such as magnetic field strengths, spatial resolutions, and imaging sequences, by adjusting the threshold. A significant negative correlation with age was observed in the general population, and this correlation was more pronounced in patients with depression (p < 10⁻⁷, r = −0.59). Habenula volume decreased with depression severity in women even when the effects of age and scanner were excluded (p = .019, η² = 0.099). Conclusions: Habenula volume could be a pathophysiologically relevant factor and diagnostic and therapeutic marker for depression, particularly in women.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2024 The Authors. Published by Elsevier Inc on behalf of the Society of Biological Psychiatry.en
dc.rightsThis is an open access article under the CC BY-NC-ND license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectDeep learningen
dc.subjectDepressionen
dc.subjectHabenulaen
dc.subjectImage analysisen
dc.subjectSex differencesen
dc.subjectStructural MRIen
dc.titleSegmentation and Volume Estimation of the Habenula Using Deep Learning in Patients With Depressionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBiological Psychiatry Global Open Scienceen
dc.identifier.volume4-
dc.identifier.issue4-
dc.relation.doi10.1016/j.bpsgos.2024.100314-
dc.textversionpublisher-
dc.identifier.artnum100314-
dc.identifier.pmid38726037-
dcterms.accessRightsopen access-
dc.identifier.eissn2667-1743-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons