このアイテムのアクセス数: 74

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
math.2024149.pdf598.37 kBAdobe PDF見る/開く
タイトル: L₂/L₁ induced norm and Hankel norm analysis in sampled-data systems
著者: Hagiwara, Tomomichi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-9212-9551 (unconfirmed)
Sugiyama, Masaki
著者名の別形: 萩原, 朋道
杉山, 晟生
キーワード: sampled-data systems
intersample behavior
induced norm
quasi Hankel norm
Hankel norm
H₂ norm
impulse response
発行日: 2024
出版者: American Institute of Mathematical Sciences (AIMS)
誌名: AIMS Mathematics
巻: 9
号: 2
開始ページ: 3035
終了ページ: 3075
抄録: his paper is concerned with the L₂/L₁ induced and Hankel norms of sampled-data systems. In defining the Hankel norm, the h-periodicity of the input-output relation of sampled-data systems is taken into account, where h denotes the sampling period; past and future are separated by the instant θ∈[O, h), and the norm of the operator describing the mapping from the past input in L₁ to the future output in L₂ is called the quasi L₂/L₁ Hankel norm at θ. The L₂/L₁ Hankel norm is defined as the supremum over θ∈[O, h) of this norm, and if it is actually attained as the maximum, then a maximum-attaining θ is called a critical instant. This paper gives characterization for the L₂/L₁ induced norm, the quasi L₂/L₁ Hankel norm at θ and the L₂/L₁ Hankel norm, and it shows that the first and the third ones coincide with each other and a critical instant always exists. The matrix-valued function H(φ) on [O, h) plays a key role in the sense that the induced/Hankel norm can be obtained and a critical instant can be detected only through H(φ), even though φ is a variable that is totally irrelevant to θ. The relevance of the induced/Hankel norm to the H₂ norm of sampled-data systems is also discussed.
著作権等: © 2024 the Author(s), licensee AIMS Press.
This is an open access article distributed under the terms of the Creative Commons Attribution License
URI: http://hdl.handle.net/2433/290594
DOI(出版社版): 10.3934/math.2024149
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons