このアイテムのアクセス数: 80

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s43856-024-00680-y.pdf3.7 MBAdobe PDF見る/開く
タイトル: Machine learning evaluation of intensified conditioning on haematopoietic stem cell transplantation in adult acute lymphoblastic leukemia patients
著者: Jo, Tomoyasu
Inoue, Kosuke  kyouindb  KAKEN_id
Ueda, Tomoaki
Iwasaki, Makoto
Akahoshi, Yu
Nishiwaki, Satoshi
Hatsusawa, Hiroki
Nishida, Tetsuya
Uchida, Naoyuki
Ito, Ayumu
Tanaka, Masatsugu
Takada, Satoru
Kawakita, Toshiro
Ota, Shuichi
Katayama, Yuta
Takahashi, Satoshi
Onizuka, Makoto
Hasegawa, Yuta
Kataoka, Keisuke
Kanda, Yoshinobu
Fukuda, Takahiro
Tabuchi, Ken
Atsuta, Yoshiko
Arai, Yasuyuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-9662-5093 (unconfirmed)
著者名の別形: 城, 友泰
井上, 浩輔
上田, 智朗
岩﨑, 惇
赤星, 佑
西脇, 聡史
初澤, 紘生
西田, 徹也
内田, 直之
伊藤, 歩
田中, 正嗣
高田, 覚
河北, 敏郎
太田, 秀一
片山, 雄太
高橋, 聡
鬼塚, 真仁
長谷川, 祐太
片岡, 圭亮
神田, 善伸
福田, 隆浩
田渕, 健
熱田, 由子
新井, 康之
キーワード: Acute lymphocytic leukaemia
Epidemiology
Prognostic markers
発行日: 25-Nov-2024
出版者: Springer Nature
誌名: Communications Medicine
巻: 4
論文番号: 247
抄録: Background: The advantage of intensified myeloablative conditioning (MAC) over standard MAC has not been determined in haematopoietic stem cell transplantation (HSCT) for adult acute lymphoblastic leukemia (ALL) patients. Methods: To evaluate heterogeneous effects of intensified MAC among individuals, we analyzed the registry database of adult ALL patients between 2000 and 2021. After propensity score matching, we applied a machine-learning Bayesian causal forest algorithm to develop a prediction model of individualized treatment effect (ITE) of intensified MAC on reduction in overall mortality at 1 year after HSCT. Results: Among 2440 propensity score-matched patients, our model shows heterogeneity in the association between intensified MAC and 1-year overall mortality. Individuals in the high-benefit group (n = 1220), defined as those with ITEs greater than the median, are more likely to be younger, male, and to have higher refined Disease Risk Index (rDRI), T-cell phenotype, and grafts from related donors than those in the low-benefit group (n = 1220). The high-benefit approach (applying intensified MAC to individuals in the high-benefit group) shows the largest reduction in overall mortality at 1 year (risk difference [95% confidence interval], +5.94 percentage points [0.88 to 10.51], p = 0.011). In contrast, the high-risk approach (targeting patients with high or very high rDRI) does not achieve statistical significance (risk difference [95% confidence interval], +3.85 percentage points [−1.11 to 7.90], p = 0.063). Conclusions: These findings suggest that the high-benefit approach, targeting patients expected to benefit from intensified MAC, has the capacity to maximize HSCT effectiveness using intensified MAC.
記述: 人工知能を用いた造血幹細胞移植の最適化 --急性リンパ芽球性白血病に対する強化型前処置の効果予測--. 京都大学プレスリリース. 2024-11-28.
著作権等: © The Author(s) 2024
This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
URI: http://hdl.handle.net/2433/290606
DOI(出版社版): 10.1038/s43856-024-00680-y
PubMed ID: 39587218
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2024-11-28
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons