このアイテムのアクセス数: 78

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.jclinepi.2024.111538.pdf435.38 kBAdobe PDF見る/開く
タイトル: Machine learning approaches to evaluate heterogeneous treatment effects in randomized controlled trials: a scoping review
著者: Inoue, Kosuke
Adomi, Motohiko
Efthimiou, Orestis
Komura, Toshiaki
Omae, Kenji
Onishi, Akira  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-3120-1273 (unconfirmed)
Tsutsumi, Yusuke
Fujii, Tomoko
Kondo, Naoki
Furukawa, Toshi A.
著者名の別形: 井上, 浩輔
安富, 元彦
古村, 俊昌
大前, 憲史
大西, 輝
堤, 悠介
藤井, 智子
近藤, 尚己
古川, 壽亮
キーワード: Heterogeneous treatment effect
Individualized treatment effect
Machine learning
Randomized controlled trial
Personalized medicine
Scoping review
発行日: Dec-2024
出版者: Elsevier BV
誌名: Journal of Clinical Epidemiology
巻: 176
論文番号: 111538
抄録: Background and Objectives: Estimating heterogeneous treatment effects (HTEs) in randomized controlled trials (RCTs) has received substantial attention recently. This has led to the development of several statistical and machine learning (ML) algorithms to assess HTEs through identifying individualized treatment effects. However, a comprehensive review of these algorithms is lacking. We thus aimed to catalog and outline currently available statistical and ML methods for identifying HTEs via effect modeling using clinical RCT data and summarize how they have been applied in practice. Study Design and Setting: We performed a scoping review using prespecified search terms in MEDLINE and Embase, aiming to identify studies that assessed HTEs using advanced statistical and ML methods in RCT data published from 2010 to 2022. Results: Among a total of 32 studies identified in the review, 17 studies applied existing algorithms to RCT data, and 15 extended existing algorithms or proposed new algorithms. Applied algorithms included penalized regression, causal forest, Bayesian causal forest, and other metalearner frameworks. Of these methods, causal forest was the most frequently used (7 studies) followed by Bayesian causal forest (4 studies). Most applications were in cardiology (6 studies), followed by psychiatry (4 studies). We provide example R codes in simulated data to illustrate how to implement these algorithms. Conclusion: This review identified and outlined various algorithms currently used to identify HTEs and individualized treatment effects in RCT data. Given the increasing availability of new algorithms, analysts should carefully select them after examining model performance and considering how the models will be used in practice.
記述: 機械学習を用いた因果効果の異質性のレビュー --医学研究での効果的な応用に向けて --. 京都大学プレスリリース. 2024-10-30.
著作権等: © 2024 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC license.
URI: http://hdl.handle.net/2433/290648
DOI(出版社版): 10.1016/j.jclinepi.2024.111538
PubMed ID: 39305940
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2024-10-30-1
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons