このアイテムのアクセス数: 70

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2024SW004121.pdf9 MBAdobe PDF見る/開く
タイトル: Channel Mixer Layer: Multimodal Fusion Toward Machine Reasoning for Spatiotemporal Predictive Learning of Ionospheric Total Electron Content
著者: Liu, Peng
Yokoyama, Tatsuhiro  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-8392-6455 (unconfirmed)
Sori, Takuya  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-6354-4417 (unconfirmed)
Yamamoto, Mamoru  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-4957-764X (unconfirmed)
著者名の別形: 劉, 鵬
横山, 竜宏
惣宇利, 卓弥
山本, 衛
キーワード: multimodal fusion
machine reasoning
spatiotemporal predictive learning
ionosphere
Total Electron Content
deep learning
発行日: Dec-2024
出版者: American Geophysical Union (AGU)
誌名: Space Weather
巻: 22
号: 12
論文番号: e2024SW004121
抄録: The spatiotemporal distribution of Total Electron Content (TEC) in ionosphere determines the refractive index of electromagnetic wave leading to the radio signal scintillation and deterioration. Thanks to the development of machine learning for video prediction, spatiotemporal predictive models are applied on the future TEC map prediction based on the graphic features of past frames. However, output result of graphic prediction is unable to properly respond to the external factor variations such as solar or geomagnetic activity. Meanwhile, there is still neither standard data -set nor comprehensive evaluation framework for spatiotemporal predictive learning of TEC map sequences leading to the comparisons unfair and insights inconclusive. In this research, a new feature-level multimodal fusion method named as channel mixer layer for machine reasoning is proposed that can be embedded into the existing advanced spatiotemporal sequence prediction models. Meanwhile, all performance benchmarks are accomplished on the same running environment and newly proposed largest scale data set. Experiment results suggest that the multimodal fusion prediction of existing model backbones by proposed method improves the prediction accuracy up to 15% with almost the same computational complexity compared to that of graphic prediction without auxiliary factors input, having the real-time inference speed of 34 frames/second and minimum mean absolute error of 0.94/2.63 TEC unit during low/high solar activity period respectively. The channel mixer layer embedded models can respond to the variations of auxiliary external factors more correctly than previous multimodal fusion methods such as concatenation and arithmetic, which is regarded as the evidence of state-of-the-art machine reasoning ability.
著作権等: © 2024. The Author(s).
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
URI: http://hdl.handle.net/2433/290911
DOI(出版社版): 10.1029/2024SW004121
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons