このアイテムのアクセス数: 78
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
pcp_pcae134.pdf | 11.44 MB | Adobe PDF | 見る/開く |
タイトル: | Catalytic mechanism underlying the regiospecificity of coumarin-substrate transmembrane prenyltransferases in Apiaceae |
著者: | Han, Junwen Munakata, Ryosuke ![]() ![]() ![]() Takahashi, Hironobu Koeduka, Takao Kubota, Mayumi Moriyoshi, Eiko Hehn, Alain Sugiyama, Akifumi ![]() ![]() ![]() Yazaki, Kazufumi |
著者名の別形: | 韓, 俊文 棟方, 涼介 杉山, 暁史 矢崎, 一史 |
キーワード: | Apiaceae coumarin Pastinaca sativa membrane-bound prenyltransferase regiospecifcity UbiA superfamily |
発行日: | Jan-2025 |
出版者: | Oxford University Press (OUP) |
誌名: | Plant And Cell Physiology |
巻: | 66 |
号: | 1 |
開始ページ: | 1 |
終了ページ: | 14 |
抄録: | Plant membrane-bound prenyltransferases (PTs) catalyze the transfer of prenyl groups to acceptor substrates, phenols, using prenyl diphosphates as the donor substrate. The presence of prenyl residues in the reaction products, prenylated phenols, is key to the expression of a variety of physiological activities. Plant PTs generally exhibit high specificities for both substrate recognition and prenylation sites, while the molecular mechanism involved in these enzymatic properties is largely unknown. In this study, we performed a systematic biochemical analysis to elucidate the catalytic mechanism responsible for the reaction specificity of plant PTs. Using two representative PTs, PsPT₁ and PsPT₂, from parsnip (Pastinaca sativa, Apiaceae), which differ only in the regiospecificity of the prenylation site, we performed domain swapping and site-directed mutagenesis of these PTs, followed by detailed enzymatic analysis combined with 3D modeling. As a result, we discovered the domains that control prenylation site specificity and further defined key amino acid residues responsible for the catalytic mechanism. In addition, we showed that the control mechanism of prenylation specificity revealed here is also highly conserved among coumarin-substrate PTs. These data suggest that the regulatory domain revealed here is commonly involved in prenylation regiospecificity in Apiaceae PTs. |
著作権等: | © The Author(s) 2024. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
URI: | http://hdl.handle.net/2433/291489 |
DOI(出版社版): | 10.1093/pcp/pcae134 |
PubMed ID: | 39575581 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス