このアイテムのアクセス数: 18

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.ifacol.2023.10.887.pdf1.89 MBAdobe PDF見る/開く
タイトル: Controllability Maximization of Network Systems: Gradient Computation Based on Offline Data
著者: Banno, Ikumi
Azuma, Shun-ichi
Ariizumi, Ryo
Asai, Toru
Imura, Jun-ichi
著者名の別形: 坂野, 幾海
東, 俊一
キーワード: Data-based control
optimization
controllability
Lyapunov equations
projected gradient descent
network systems
発行日: 2023
出版者: Elsevier BV
誌名: 22nd IFAC World Congress 2023 (IFAC2023)
巻: 56
号: 2
開始ページ: 10138
終了ページ: 10143
抄録: In the field of network systems, controllability maximization has become more important in terms of efficient control. When an exact model of a network system is not available, data-driven approaches are useful. In this paper, we establish a framework for maximizing the controllability of networked systems by using off-line data. In particular, the maximization with respect to the network topology of the network system is addressed. First, we develop a data-driven method for solving the Lyapunov equation which describes the properties of a system different from the system associated with the data. Second, based on this result, we derive a data-driven method for computing the gradient of a controllability measure (the trace of the controllability Gramian) with respect to the network topology of the network system. Finally, we show that our gradient computation can be used for controllability maximization based on off-line data. The effectiveness of the data-driven methods is numerically demonstrated.
記述: 22nd IFAC World Congress, Yokohama, Japan, July 9-14, 2023
著作権等: © 2023 The Authors.
This is an open access article under the CC BY-NC-ND license
URI: http://hdl.handle.net/2433/291569
DOI(出版社版): 10.1016/j.ifacol.2023.10.887
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons