このアイテムのアクセス数: 18
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.ifacol.2023.10.887.pdf | 1.89 MB | Adobe PDF | 見る/開く |
タイトル: | Controllability Maximization of Network Systems: Gradient Computation Based on Offline Data |
著者: | Banno, Ikumi Azuma, Shun-ichi Ariizumi, Ryo Asai, Toru Imura, Jun-ichi |
著者名の別形: | 坂野, 幾海 東, 俊一 |
キーワード: | Data-based control optimization controllability Lyapunov equations projected gradient descent network systems |
発行日: | 2023 |
出版者: | Elsevier BV |
誌名: | 22nd IFAC World Congress 2023 (IFAC2023) |
巻: | 56 |
号: | 2 |
開始ページ: | 10138 |
終了ページ: | 10143 |
抄録: | In the field of network systems, controllability maximization has become more important in terms of efficient control. When an exact model of a network system is not available, data-driven approaches are useful. In this paper, we establish a framework for maximizing the controllability of networked systems by using off-line data. In particular, the maximization with respect to the network topology of the network system is addressed. First, we develop a data-driven method for solving the Lyapunov equation which describes the properties of a system different from the system associated with the data. Second, based on this result, we derive a data-driven method for computing the gradient of a controllability measure (the trace of the controllability Gramian) with respect to the network topology of the network system. Finally, we show that our gradient computation can be used for controllability maximization based on off-line data. The effectiveness of the data-driven methods is numerically demonstrated. |
記述: | 22nd IFAC World Congress, Yokohama, Japan, July 9-14, 2023 |
著作権等: | © 2023 The Authors. This is an open access article under the CC BY-NC-ND license |
URI: | http://hdl.handle.net/2433/291569 |
DOI(出版社版): | 10.1016/j.ifacol.2023.10.887 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス