このアイテムのアクセス数: 36
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.sandf.2024.101525.pdf | 4.28 MB | Adobe PDF | 見る/開く |
タイトル: | Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning |
著者: | Hayashi, Koichi ![]() ![]() ![]() Suzuki, Toru Inazaki, Tomio Konishi, Chisato Suzuki, Haruhiko Matsuyama, Hisanori |
著者名の別形: | 林, 宏一 |
キーワード: | Horizontal-to-vertical spectral ratio S-wave velocity Machine learning Inversion Microtremor Surface wave Japan |
発行日: | Dec-2024 |
出版者: | Elsevier BV The Japanese Geotechnical Society |
誌名: | Soils and Foundations |
巻: | 64 |
号: | 6 |
論文番号: | 101525 |
抄録: | S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (Vₛ₃₀) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or Vₛ₃₀. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their Vₛ₃₀ are reasonably consistent with true Vs profiles and their Vₛ₃₀. The results implied that the deep learning could estimate Vs profile from H/V together with other information. |
著作権等: | © 2022 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY license. |
URI: | http://hdl.handle.net/2433/291588 |
DOI(出版社版): | 10.1016/j.sandf.2024.101525 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス