このアイテムのアクセス数: 36

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.sandf.2024.101525.pdf4.28 MBAdobe PDF見る/開く
タイトル: Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning
著者: Hayashi, Koichi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-5064-8874 (unconfirmed)
Suzuki, Toru
Inazaki, Tomio
Konishi, Chisato
Suzuki, Haruhiko
Matsuyama, Hisanori
著者名の別形: 林, 宏一
キーワード: Horizontal-to-vertical spectral ratio
S-wave velocity
Machine learning
Inversion
Microtremor
Surface wave
Japan
発行日: Dec-2024
出版者: Elsevier BV
The Japanese Geotechnical Society
誌名: Soils and Foundations
巻: 64
号: 6
論文番号: 101525
抄録: S-wave velocity (Vs) profile or time averaged Vs to 30 m depth (Vₛ₃₀) is indispensable information to estimate the local site amplification of ground motion from earthquakes. We use a horizontal-to-vertical spectral ratio (H/V) of seismic ambient noise to estimate the Vs profiles or Vₛ₃₀. The measurement of H/V is easier, compared to active surface wave methods (MASW) or microtremor array measurements (MAM). The inversion of H/V is non-unique and it is impossible to obtain unique Vs profiles. We apply deep learning to estimate the Vs profile from H/V together with other information including site coordinates, deep bedrock depths, and geomorphological classification. The pairs of H/V spectra (input layer) and Vs profiles (output layer) are used as training data. An input layer consists of an observed H/V spectrum, site coordinates, deep bedrock depths, and geomorphological classification, and an output layer is a velocity profile. We applied the method to the South Kanto Plain, Japan. We measured MASW, MAM and H/V at approximately 2300 sites. The pairs of H/V spectrum together with their coordinates, geomorphological classification etc. and Vs profile obtained from the inversion of dispersion curve and H/V, compose the training data. A trained neural network predicts Vs profiles from the observed H/V spectra with other information. Predicted Vs profiles and their Vₛ₃₀ are reasonably consistent with true Vs profiles and their Vₛ₃₀. The results implied that the deep learning could estimate Vs profile from H/V together with other information.
著作権等: © 2022 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.
This is an open access article under the CC BY license.
URI: http://hdl.handle.net/2433/291588
DOI(出版社版): 10.1016/j.sandf.2024.101525
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons