このアイテムのアクセス数: 57
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.spa.2025.104563.pdf | 1.09 MB | Adobe PDF | 見る/開く |
タイトル: | On decomposition of the last passage time of diffusions |
著者: | Egami, Masahiko ![]() ![]() ![]() Kevkhishvili, Rusudan ![]() |
著者名の別形: | 江上, 雅彦 |
キーワード: | Diffusion Last passage time Decomposition Occupation time Green function |
発行日: | Apr-2025 |
出版者: | Elsevier BV |
誌名: | Stochastic Processes and their Applications |
巻: | 182 |
論文番号: | 104563 |
抄録: | For a regular transient diffusion, we derive the decomposition formula of the Laplace transform of the last passage time to a certain state 𝛼 explicitly in a simple form in terms of the Green functions, which also leads to the Green function’s decomposition formula. This is accomplished by transforming the original diffusion into two diffusions using the occupation time of the area above and below 𝛼. We demonstrate applications of the decomposition formulas to various diffusions including a Brownian motion with two-valued drift and present a financial example of the leverage effect caused by the stock price with switching volatility. |
著作権等: | © 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. |
URI: | http://hdl.handle.net/2433/291644 |
DOI(出版社版): | 10.1016/j.spa.2025.104563 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス