このアイテムのアクセス数: 25

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
5.0248430.pdf2.43 MBAdobe PDF見る/開く
タイトル: Estimating depth-directional thermal conductivity profiles using neural network with dropout in frequency-domain thermoreflectance
著者: Ikeda, Yasuaki
Akura, Yuki
Shimofuri, Masaki
Banerjee, Amit
Tsuchiya, Toshiyuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-7846-5831 (unconfirmed)
Hirotani, Jun  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-2054-1712 (unconfirmed)
キーワード: Thermal conductivity
Semiconductor devices
Heat transfer
Artificial neural networks
Machine learning
Frequency domain thermoreflectance
Material characterization methods
Regression analysis
発行日: 7-Feb-2025
出版者: AIP Publishing
誌名: Journal of Applied Physics
巻: 137
号: 5
論文番号: 055106
抄録: Non-contact and non-destructive methods are essential for accurately determining the thermophysical properties necessary for the optimal thermal design of semiconductor devices and for assessing the properties of materials with varying crystallinity across their thickness. Among these methods, frequency-domain thermoreflectance (FDTR) stands out as an effective technique for evaluating the thermal characteristics of nano/microscale specimens. FDTR varies the thermal penetration depth by modifying the heating frequency, enabling a detailed analysis of the thermophysical properties at different depths. This study introduces a machine learning approach that employs FDTR to examine the thermal conductivity profile along the depth of a specimen. A neural network model incorporating dropout techniques was adapted to estimate the posterior probability distribution of depth-wise thermal conductivity. Analytical databases for both uniform and non-uniform thermal conductivity profiles were generated, and the machine learning model was trained using these databases. The effectiveness of the predictive model was confirmed through assessments of both uniform and non-uniform thermal conductivity profiles, achieving a coefficient of determination between 0.96 and 0.99. For uniform thermal conductivity, the method attained mean absolute percentage errors of 1.362% for thermal conductivity and 3.466% for thermal boundary conductance (compared to actual values in the analytically calculated database). In cases of non-uniform thermal conductivity, the prediction accuracy decreased, particularly near the sample's surface, primarily due to the limited availability of machine learning data at higher heating frequencies.
著作権等: © 2025 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license.
URI: http://hdl.handle.net/2433/292189
DOI(出版社版): 10.1063/5.0248430
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons