このアイテムのアクセス数: 16

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2282-11.pdf7.21 MBAdobe PDF見る/開く
タイトル: Self-organized aggregation and traveling wave in a kinetic transport model for run-and-tumble bacteria (Mathematical Analysis in Fluid and Gas Dynamics)
著者: Yasuda, Shugo
著者名の別形: 安田, 修悟
キーワード: Kinetic transport equation
chemotaxis
run-and-tumble
pattern formation
Monte Carlo simulation
発行日: May-2024
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2282
開始ページ: 116
終了ページ: 139
抄録: The self-organized pattern formation of run-and-tumble chemotactic bacteria is numerically investigated based on a kinetic transport equation considering internal adaptation dynamics and a finite tumbling duration. It is confirmed that the volcano-like aggregation profile is generated due to the coupling of diffusion and internal adaptation dynamics occurring at a large adaptation-time scaling. Moreover, an extended Keller-Segel model, derived by the asymptotic analysis of the kinetic model at the large adaptation-time scale, can describe the volcano effect well. It is also found that when the mean run length of the bacteria becomes large, the volcano effect is more enhanced and unexpectedly, different types of pattern formation (i.e., standing and traveling bands) arise at very large adaptation times. The mathematical mechanism of the novel pattern formation should be an important future study. This paper is a resume of previous studies by the author in S. Yasuda, Bull. Math. Biol. 84, 113 (2022) and K. Adachi and S. Yasuda, Springer Proc. Math. Stat. 429, 235 (2023).
URI: http://hdl.handle.net/2433/292916
関連リンク: https://www2.kobe-u.ac.jp/~ueda/RIMS/index.html
出現コレクション:2282 流体と気体の数学解析

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。