Access count of this item: 40

Files in This Item:
File Description SizeFormat 
jep.140.pdf1.09 MBAdobe PDFView/Open
Title: On a topological counterpart of regularization for holonomic đť’ź-modules
Authors: D’Agnolo, Andrea
Kashiwara, Masaki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-6851-7581 (unconfirmed)
Author's alias: ćźŹĺŽź, 正樹
Keywords: Irregular Riemann-Hilbert correspondence
enhanced perverse sheaves
holonomic D-modules
Issue Date: 2021
Publisher: Centre National de la Recherche Scientifique
Journal title: Journal de l’École polytechnique -- MathĂ©matiques
Volume: 8
Start page: 27
End page: 55
Abstract: On a complex manifold, the embedding of the category of regular holonomic đť’ź-modules into that of holonomic đť’ź-modules has a left quasi-inverse functor ℳ→ℳreg, called regularization. Recall that ℳreg is reconstructed from the de Rham complex of ℳ by the regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification. Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspondence. Here, we study some of the properties of the sheafification functor. In particular, we provide a stalk formula for the sheafification of enhanced specialization and microlocalization.
Rights: Â© Les auteurs, 2021.
Cet article est mis à disposition selon les termes de la licence LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.
URI: http://hdl.handle.net/2433/293034
DOI(Published Version): 10.5802/jep.140
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks


Export Format: 


This item is licensed under a Creative Commons License Creative Commons