このアイテムのアクセス数: 45
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2632-2153_adc2c7.pdf | 957.14 kB | Adobe PDF | 見る/開く |
タイトル: | Tensor tree learns hidden relational structures in data to construct generative models |
著者: | Harada, Kenji ![]() ![]() ![]() Okubo, Tsuyoshi Kawashima, Naoki |
著者名の別形: | 原田, 健自 |
キーワード: | generative modeling Born machine tensor network tensor tree network structure optimization mutual information |
発行日: | Jun-2025 |
出版者: | IOP Publishing |
誌名: | Machine Learning: Science and Technology |
巻: | 6 |
号: | 2 |
論文番号: | 025002 |
抄録: | Based on the tensor tree network with the Born machine framework, we propose a general method for constructing a generative model by expressing the target distribution function as the amplitude of the quantum wave function represented by a tensor tree. The key idea is dynamically optimizing the tree structure that minimizes the bond mutual information. The proposed method offers enhanced performance and uncovers hidden relational structures in the target data. We illustrate potential practical applications with four examples: (i) random patterns, (ii) QMNIST handwritten digits, (iii) Bayesian networks, and (iv) the pattern of stock price fluctuation pattern in S&P500. In (i) and (ii), the strongly correlated variables were concentrated near the center of the network; in (iii), the causality pattern was identified; and in (iv), a structure corresponding to the eleven sectors emerged. |
記述: | テンソルネットワークによる生成モデル --株式騰落パターンから相関構造が発現-- . 京都大学プレスリリース. 2025-04-07. |
著作権等: | © 2025 The Author(s). Published by IOP Publishing Ltd Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
URI: | http://hdl.handle.net/2433/293051 |
DOI(出版社版): | 10.1088/2632-2153/adc2c7 |
関連リンク: | https://www.kyoto-u.ac.jp/ja/research-news/2025-04-07 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス