このアイテムのアクセス数: 45

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2632-2153_adc2c7.pdf957.14 kBAdobe PDF見る/開く
タイトル: Tensor tree learns hidden relational structures in data to construct generative models
著者: Harada, Kenji  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-0231-7880 (unconfirmed)
Okubo, Tsuyoshi
Kawashima, Naoki
著者名の別形: 原田, 健自
キーワード: generative modeling
Born machine
tensor network
tensor tree
network structure optimization
mutual information
発行日: Jun-2025
出版者: IOP Publishing
誌名: Machine Learning: Science and Technology
巻: 6
号: 2
論文番号: 025002
抄録: Based on the tensor tree network with the Born machine framework, we propose a general method for constructing a generative model by expressing the target distribution function as the amplitude of the quantum wave function represented by a tensor tree. The key idea is dynamically optimizing the tree structure that minimizes the bond mutual information. The proposed method offers enhanced performance and uncovers hidden relational structures in the target data. We illustrate potential practical applications with four examples: (i) random patterns, (ii) QMNIST handwritten digits, (iii) Bayesian networks, and (iv) the pattern of stock price fluctuation pattern in S&P500. In (i) and (ii), the strongly correlated variables were concentrated near the center of the network; in (iii), the causality pattern was identified; and in (iv), a structure corresponding to the eleven sectors emerged.
記述: テンソルネットワークによる生成モデル --株式騰落パターンから相関構造が発現-- . 京都大学プレスリリース. 2025-04-07.
著作権等: © 2025 The Author(s). Published by IOP Publishing Ltd
Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
URI: http://hdl.handle.net/2433/293051
DOI(出版社版): 10.1088/2632-2153/adc2c7
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2025-04-07
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons