このアイテムのアクセス数: 3

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
adsu.202300354.pdf1.48 MBAdobe PDF見る/開く
タイトル: Mid-Infrared Spectroscopy and Machine Learning for Nondestructive Detection of Inapparent Deterioration in Acrylic Waterborne Coatings for Wood
著者: Teramoto, Yoshikuni  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-3850-3570 (unconfirmed)
Ito, Takumi
Yamamoto, Chihiro
Takano, Toshiyuki
Ohki, Hironari
著者名の別形: 寺本, 好邦
髙野, 俊幸
キーワード: accelerated weathering
cellulose nanofibers
inapparent deterioration
machine learning
mid-infrared spectroscopy
nondestructive detections
waterborne acrylic wood coating
発行日: Feb-2024
出版者: Wiley
誌名: Advanced Sustainable Systems
巻: 8
号: 2
論文番号: 2300354
抄録: This study presents an approach for nondestructive detection of inapparent deterioration in waterborne acrylic coatings (containing cellulose nanofibers (CNFs)) for wood by using mid-infrared spectroscopy and machine learning. The method evaluates films that mimic coatings before and after 500 h of accelerated weathering, equivalent to roughly 1 year of outdoor exposure. No noticeable transformation in film appearance is evident with a spectrophotometer following the accelerated weathering. Chemiluminescence analysis indicates oxidative degradation predominantly in the acrylic resin, an impact that the CNFs seem to mitigate. Whereas attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy commonly identifies chemical changes in visibly degraded coatings, it does not clearly discern prior, inapparent deterioration. In this context, machine learning algorithms (such as k-nearest neighbors, decision tree, random forest (RF), and support vector machine (SVM)) categorize these nuanced changes by using the absorbance from 400 to 4000 cm⁻¹ as explanatory variables. The SVM model exhibits the highest predictive accuracy, and the RF recognizes crucial variables in some wavenumber zones. This approach has the potential for enhancing recoating schedules, cutting costs, and encouraging sustainable use of wood.
著作権等: © 2023 The Authors. Advanced Sustainable Systems published by Wiley-VCH GmbH
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/2433/293372
DOI(出版社版): 10.1002/adsu.202300354
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons