このアイテムのアクセス数: 16

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
admi.202300864.pdf3.6 MBAdobe PDF見る/開く
タイトル: Influence of Primary Particle Morphology and Hydrophilicity of Carbon Matrix on Electrode Coating Quality and Performance of Practical High-Energy-Density Li–S Batteries
著者: Li, Shanglin
Chen, Zhaoyue
Yamamoto, Kentaro
Watanabe, Toshiki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-1798-1987 (unconfirmed)
Uchimoto, Yoshiharu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-1491-2647 (unconfirmed)
Mori, Yuki
Inoue, Gen
Ohuchi, Kazuya
Inagaki, Satoshi
Ueno, Kazuhide
Dokko, Kaoru
Watanabe, Masayoshi
著者名の別形: 渡邊, 稔樹
内本, 喜晴
キーワード: composite sulfur cathode
high-energy-density battery
lithium–sulfur battery
mesoporous carbon
pouch cell
発行日: 5-May-2024
出版者: Wiley
誌名: Advanced Materials Interfaces
巻: 11
号: 7
論文番号: 2300864
抄録: Li–S batteries have attracted attention as the next-generation secondary batteries. While substantial progress is made in understanding Li–S chemistry at a fundamental level, only a limited number of studies are dedicated to achieving high energy density at the practical pouch cell level. The challenge lies in attaining high-energy-density Li–S batteries under harsh conditions, which involve a minimal amount of electrolyte and a relatively high areal S-loading cathode. This discrepancy creates a substantial gap between fundamental material research and comprehensive cell-level investigations. In this study, it is investigated how the morphology and properties of two carbon materials, namely Ketjen black (KB) and mesoporous carbon nano-dendrites (MCND), influence the composite cathode architecture and determine the performance of Li–S batteries. Unlike KB, MCND allows for a higher sulfur-loading cathode without evident cracks in the composite cathode. This achievement can be attributed to the high porosity, excellent wettability, and high conductivity exhibited during an identical electrode preparation procedure. Furthermore, large-format Li–S pouch cells incorporating MCND/S cathodes are successfully fabricated. These cells demonstrate an energy density surpassing 250 Wh kg⁻¹ and an initial discharge capacity of 3.7 Ah under challenging conditions (S-loading > 5 mg cm⁻² and E/S < 3.5 µL mg⁻¹).
著作権等: © 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/2433/293430
DOI(出版社版): 10.1002/admi.202300864
関連リンク: https://onlinelibrary.wiley.com/doi/pdf/10.1002/admi.202300864
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons