このアイテムのアクセス数: 16
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
admi.202300864.pdf | 3.6 MB | Adobe PDF | 見る/開く |
タイトル: | Influence of Primary Particle Morphology and Hydrophilicity of Carbon Matrix on Electrode Coating Quality and Performance of Practical High-Energy-Density Li–S Batteries |
著者: | Li, Shanglin Chen, Zhaoyue Yamamoto, Kentaro Watanabe, Toshiki ![]() ![]() ![]() Uchimoto, Yoshiharu ![]() ![]() ![]() Mori, Yuki Inoue, Gen Ohuchi, Kazuya Inagaki, Satoshi Ueno, Kazuhide Dokko, Kaoru Watanabe, Masayoshi |
著者名の別形: | 渡邊, 稔樹 内本, 喜晴 |
キーワード: | composite sulfur cathode high-energy-density battery lithium–sulfur battery mesoporous carbon pouch cell |
発行日: | 5-May-2024 |
出版者: | Wiley |
誌名: | Advanced Materials Interfaces |
巻: | 11 |
号: | 7 |
論文番号: | 2300864 |
抄録: | Li–S batteries have attracted attention as the next-generation secondary batteries. While substantial progress is made in understanding Li–S chemistry at a fundamental level, only a limited number of studies are dedicated to achieving high energy density at the practical pouch cell level. The challenge lies in attaining high-energy-density Li–S batteries under harsh conditions, which involve a minimal amount of electrolyte and a relatively high areal S-loading cathode. This discrepancy creates a substantial gap between fundamental material research and comprehensive cell-level investigations. In this study, it is investigated how the morphology and properties of two carbon materials, namely Ketjen black (KB) and mesoporous carbon nano-dendrites (MCND), influence the composite cathode architecture and determine the performance of Li–S batteries. Unlike KB, MCND allows for a higher sulfur-loading cathode without evident cracks in the composite cathode. This achievement can be attributed to the high porosity, excellent wettability, and high conductivity exhibited during an identical electrode preparation procedure. Furthermore, large-format Li–S pouch cells incorporating MCND/S cathodes are successfully fabricated. These cells demonstrate an energy density surpassing 250 Wh kg⁻¹ and an initial discharge capacity of 3.7 Ah under challenging conditions (S-loading > 5 mg cm⁻² and E/S < 3.5 µL mg⁻¹). |
著作権等: | © 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
URI: | http://hdl.handle.net/2433/293430 |
DOI(出版社版): | 10.1002/admi.202300864 |
関連リンク: | https://onlinelibrary.wiley.com/doi/pdf/10.1002/admi.202300864 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス