このアイテムのアクセス数: 20

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
transjsme.24-00184.pdf3.07 MBAdobe PDF見る/開く
タイトル: 能動的機械学習とハイスループット第一原理計算によるデータ駆動型非線形強誘電物性のひずみ最適化
その他のタイトル: First-principles based data-driven strain engineering for ferroelectrics via active machine learning: A nonlinear piezoelectric constitutive equation
著者: 見波, 将  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2852-3503 (unconfirmed)
丸山, 泰明  KAKEN_name
阿部, 能将  KAKEN_name
仲山, 智裕  KAKEN_name
嶋田, 隆広  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-8404-5673 (unconfirmed)
著者名の別形: MINAMI, Susumu
MARUYAMA, Yasuaki
ABE, Yoshimasa
NAKAYAMA, Tomohiro
SHIMADA, Takahiro
キーワード: Ferroelectrics
Machine learning
Piezoelectric properties
First-principles calculation
High-throughput computing
Strain engineering
発行日: 2025
出版者: 日本機械学会
誌名: 日本機械学会論文集
巻: 91
号: 941
開始ページ: 24
終了ページ: 00184
抄録: Strain engineering is a crucial approach in the engineering field to optimize various physical properties of materials by applying mechanical strain loading. However, it is extremely challenging to find out the best conditions of strain with unprecedented physical properties in the vast strain space consisting of six components. Here, we developed a technical framework that enables efficient exploration of physical properties in the vast strain space based on machine learning (i.e., artificial neural networks), active learning, and high-throughput first-principles calculation. We demonstrated the active learning technique to successfully and efficiently construct an accurate machine learning model for ferroelectric PbTiO₃ with minimal first-principles datasets (only 3.7% of the vast strain-space). Our machine learning model can accurately predict the nonlinear mechanical deformation and electromechanical response in the three components of normal strain loading. We also carried out strain optimization of piezoelectric response using the machine learning model and found that a large piezoelectric response is five times larger than without strain loading. We showed that the physical property explorer framework constructed in this study makes it possible to optimize strain for various material properties in a vast strain space by calculating only a small number of data points. These results suggest paving the way for constructing nonlinear piezoelectric constitutive equations for novel piezoelectric devices via strain engineering.
著作権等: © 2025 一般社団法人日本機械学会
この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
URI: http://hdl.handle.net/2433/293651
DOI(出版社版): 10.1299/transjsme.24-00184
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons