このアイテムのアクセス数: 9

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
18824889.2023.2279338.pdf1.4 MBAdobe PDF見る/開く
タイトル: Anomaly detection of semiconductor processing equipment using equipment behaviour
著者: Hirai, Toshiya
Shiga, Yuki
Shimizu, Mitsuru
Imura, Eiji
Kano, Manabu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2325-1043 (unconfirmed)
著者名の別形: 加納, 学
キーワード: Semiconductor
process equipment
deposition
cluster analysis
anomaly detection
発行日: 2023
出版者: Taylor & Francis
誌名: SICE Journal of Control, Measurement, and System Integration
巻: 16
号: 1
開始ページ: 332
終了ページ: 337
抄録: As semiconductor design rules evolve, the required level of reliability for semiconductor processing equipment is increasing. It is impossible to detect anomalies simply by checking a single factor, the oxygen concentration, which is the most important indicator of the equipment performance. We extracted 16 features from the behaviour of oxygen concentration and pressure in the load area, and built univariate and multivariate models by using logistic regression with these features. The proposed method was able to detect anomalous equipment that could not be detected by monitoring only the oxygen concentration, and greatly shortened the processing lead time including adjustment.
著作権等: © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
URI: http://hdl.handle.net/2433/293780
DOI(出版社版): 10.1080/18824889.2023.2279338
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons