このアイテムのアクセス数: 24

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
pnas.2418218122.pdf1.95 MBAdobe PDF見る/開く
タイトル: The cortical critical power law balances energy and information in an optimal fashion
著者: Tatsukawa, Tsuyoshi
Teramae, Jun-nosuke
キーワード: population coding
power law
neural manifolds
Fisher information
computational neuroscience
発行日: 27-May-2025
出版者: National Academy of Sciences
誌名: Proceedings of the National Academy of Sciences (PNAS)
巻: 122
号: 21
論文番号: e2418218122
抄録: A recent study has suggested that the stimulus responses of cortical neural populations follow a critical power law. More precisely, the power spectrum of the covariance matrix of neural responses follows a power law with an exponent indicating that the neural manifold lies on the edge of differentiability. This criticality is hypothesized to balance expressivity and robustness in neural encoding, as population responses on a nondifferential fractal manifold are thought to be overly sensitive to perturbations. However, contrary to this hypothesis, we prove that neural coding is far more robust than previously assumed. We develop a theoretical framework that provides an analytical expression for the Fisher information of population coding under the small noise assumption. Our results reveal that, due to its intrinsic high dimensionality, population coding maintains reliability even on a nondifferentiable fractal manifold, despite its sensitivity to perturbations. Furthermore, the theory reveals that the trade-off between energetic cost and information makes the critical power-law coding the optimal neural encoding of sensory information for a wide range of conditions. In this derivation, we highlight the essential role of a neural correlation, known as differential correlation, in power-law population coding. By uncovering the nontrivial nature of high-dimensional information coding, this work deepens our understanding of criticality and power laws in both biological and artificial neural computation.
記述: 脳は情報とエネルギーの最適バランスを実現 --脳の情報処理が予想以上に頑健なことを発見-- . 京都大学プレスリリース. 2025-05-27.
著作権等: Copyright © 2025 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
URI: http://hdl.handle.net/2433/294312
DOI(出版社版): 10.1073/pnas.2418218122
PubMed ID: 40408401
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons