このアイテムのアクセス数: 307
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.jfa.2009.11.001.pdf | 725.74 kB | Adobe PDF | 見る/開く |
タイトル: | Spectral asymptotics for Laplacians on self-similar sets |
著者: | Kajino, Naotaka ![]() ![]() ![]() |
著者名の別形: | 梶野, 直孝 |
キーワード: | Dirichlet forms Eigenvalue counting function Partition function Self-similar sets Short time asymptotics Sierpinski carpets Sub-Gaussian heat kernel estimate |
発行日: | 15-Feb-2010 |
出版者: | Elsevier Science B.V. Amsterdam |
誌名: | Journal of Functional Analysis |
巻: | 258 |
号: | 4 |
開始ページ: | 1310 |
終了ページ: | 1360 |
抄録: | Given a self-similar Dirichlet form on a self-similar set, we first give an estimate on the asymptotic order of the associated eigenvalue counting function in terms of a 'geometric counting function' defined through a family of coverings of the self-similar set naturally associated with the Dirichlet space. Secondly, under (sub-)Gaussian heat kernel upper bound, we prove a detailed short time asymptotic behavior of the partition function, which is the Laplace-Stieltjes transform of the eigenvalue counting function associated with the Dirichlet form. This result can be applicable to a class of infinitely ramified self-similar sets including generalized Sierpinski carpets, and is an extension of the result given recently by B.M. Hambly for the Brownian motion on generalized Sierpinski carpets. Moreover, we also provide a sharp remainder estimate for the short time asymptotic behavior of the partition function. |
著作権等: | c 2009 Elsevier Inc. All rights reserved. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/89694 |
DOI(出版社版): | 10.1016/j.jfa.2009.11.001 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。