ダウンロード数: 215

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.surfcoat.2016.04.053.pdf1.03 MBAdobe PDF見る/開く
タイトル: Molecular dynamics simulations study of nano particle migration by cluster impact
著者: Aoki, Takaaki
Seki, Toshio  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-0834-1657 (unconfirmed)
Matsuo, Jiro
著者名の別形: 青木, 学聡
瀬木, 利夫
松尾, 二郎
キーワード: Molecular dynamics simulation
Gas cluster ion
Surface cleaning
発行日: 25-Nov-2016
出版者: Elsevier
誌名: Surface and Coatings Technology
巻: 360
号: Part A
開始ページ: 63
終了ページ: 68
抄録: Molecular dynamics (MD) simulations are performed in order to investigate the radiation effects of a huge and slow gas cluster for the surface cleaning process. When a large argon cluster with the size ranging from 20, 000 to 300, 000 is accelerated with a total of 30. keV, each constituent atom carries very low energy ranging from 1.5. eV/atom to 0.1. eV/atom. In many cases, the cluster does not penetrate the solid target surface but is deflected in a lateral direction. This collisional process results in a high density particle flow spreading along the surface plane due to cohesion of the cluster, which suggests the capability to modify the irregular surface structure, without damage in the target. The MD simulations demonstrate that such a huge cluster sweeps a nano particle (NP, 3. nm in radius) attached on a planar silicon target's surface. From the investigation of various conditions of cluster impact, it is found that the migration distance is correlated with the kinetic energy applied on the NP by the impact of cluster atoms. Additionally, the MD results suggest the existence of optimized parameters for the maximum migration distance for the offset distance between the cluster and the NP, and the cluster size for constant total energy (equivalent to energy per atom or kinetic energy density). The optimized offset distance was estimated as the summation of radii of the incident cluster and the NP. The optimized energy per atom was suggested around 0.6. eV/atom, where the cluster efficiently spreads in lateral direction keeping higher kinetic energy density of particle flow.
著作権等: © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The full-text file will be made open to the public on 25 November 2018 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
This is not the published version. Please cite only the published version.
URI: http://hdl.handle.net/2433/217223
DOI(出版社版): 10.1016/j.surfcoat.2016.04.053
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。