ダウンロード数: 1016

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
sciadv.1600499.pdf706.47 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAsano, Takashien
dc.contributor.authorSuemitsu, Masahiroen
dc.contributor.authorHashimoto, Koheien
dc.contributor.authorDe Zoysa, Menakaen
dc.contributor.authorShibahara, Tatsuyaen
dc.contributor.authorTsutsumi, Tatsunorien
dc.contributor.authorNoda, Susumuen
dc.contributor.alternative浅野, 卓ja
dc.contributor.alternative末光, 真大ja
dc.contributor.alternative野田, 進ja
dc.date.accessioned2016-12-27T04:20:34Z-
dc.date.available2016-12-27T04:20:34Z-
dc.date.issued2016-12-23-
dc.identifier.issn2375-2548-
dc.identifier.urihttp://hdl.handle.net/2433/217701-
dc.description「熱エネルギー」を太陽電池が効率よく発電できる波長の「光」に変換することに初めて成功. 京都大学プレスリリース. 2016-12-27.ja
dc.description.abstractControl of the thermal emission spectra of emitters will result in improved energy utilization efficiency in a broad range of fields, including lighting, energy harvesting, and sensing. In particular, it is challenging to realize a highly selective thermal emitter in the near-infrared–to–visible range, in which unwanted thermal emission spectral components at longer wavelengths are significantly suppressed, whereas strong emission in the near-infrared–to–visible range is retained. To achieve this, we propose an emitter based on interband transitions in a nanostructured intrinsic semiconductor. The electron thermal fluctuations are first limited to the higher-frequency side of the spectrum, above the semiconductor bandgap, and are then enhanced by the photonic resonance of the structure. Theoretical calculations indicate that optimized intrinsic Si rod-array emitters with a rod radius of 105 nm can convert 59% of the input power into emission of wavelengths shorter than 1100 nm at 1400 K. It is also theoretically indicated that emitters with a rod radius of 190 nm can convert 84% of the input power into emission of <1800-nm wavelength at 1400 K. Experimentally, we fabricated a Si rod-array emitter that exhibited a high peak emissivity of 0.77 at a wavelength of 790 nm and a very low background emissivity of <0.02 to 0.05 at 1100 to 7000 nm, under operation at 1273 K. Use of a nanostructured intrinsic semiconductor that can withstand high temperatures is promising for the development of highly efficient thermal emitters operating in the near-infrared–to–visible range.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Association for the Advancement of Science (AAAS)en
dc.rights2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).en
dc.subjectthermal emission controlen
dc.subjectnear-infrareden
dc.subjectvisibleen
dc.subjectenergy utilization efficiencyen
dc.subjectthermal emitteren
dc.subjectintrinsic semiconductoren
dc.subjectinterband transitionen
dc.subjectelectronic resonanceen
dc.subjectphotonic resonanceen
dc.titleNear-infrared–to–visible highly selective thermal emitters based on an intrinsic semiconductoren
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleScience Advancesen
dc.identifier.volume2-
dc.identifier.issue12-
dc.relation.doi10.1126/sciadv.1600499-
dc.textversionpublisher-
dc.identifier.artnume1600499-
dc.identifier.pmid28028532-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2016-12-27-
dcterms.accessRightsopen access-
dc.identifier.eissn2375-2548-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。