このアイテムのアクセス数: 553

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
Fujiwara_2010_CILS.pdf278.4 kBAdobe PDF見る/開く
タイトル: Development of correlation-based clustering method and its application to software sensing
著者: Fujiwara, Koichi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2929-0561 (unconfirmed)
Kano, Manabu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2325-1043 (unconfirmed)
Hasebe, Shinji  KAKEN_id  orcid https://orcid.org/0000-0003-0956-5051 (unconfirmed)
著者名の別形: 藤原, 幸一
キーワード: Spectral clustering
Nearest correlation method
Soft-sensor
Batch process
Correlation
Graph Theory
発行日: 15-Apr-2010
出版者: Elsevier
誌名: Chemometrics and Intelligent Laboratory Systems
巻: 101
号: 2
開始ページ: 130
終了ページ: 138
抄録: The individuality of production devices should be taken into account when soft-sensors are designed for parallelized devices. Since it is expressed as differences of the correlation among measured variables, it is useful to cluster samples on the basis of the correlation among variables for adopting a multi-model approach. In addition, changes in process characteristics can be coped with in the same way. In the present work, a new clustering method, referred to as NC-spectral clustering, is proposed by integrating the nearest correlation (NC) method and spectral clustering. Spectral clustering is a graph partitioning method that can be used for sample classification when an affinity matrix of a weighted graph is given. The NC method can detect samples that are similar to the query from the viewpoint of the correlation without a teacher signal. In the proposed method, the NC method is used for constructing the weighted graph that expresses the correlation-based similarities between samples and the constructed graph is partitioned by using spectral clustering. In addition, a new soft-sensor design method is proposed on the basis of the proposed NC-spectral clustering. The usefulness of the proposed methods is demonstrated through a numerical example and a case study of parallelized batch processes. The performance of the proposed correlation-based method is better than that of the conventional distance-based methods.
著作権等: © 2010 Elsevier B.V.
This is not the published version. Please cite only the published version.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/120792
DOI(出版社版): 10.1016/j.chemolab.2010.02.006
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。