ダウンロード数: 249
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
1.3371248.pdf | 128.04 kB | Adobe PDF | 見る/開く |
タイトル: | Infinitely many shape-invariant potentials and cubic identities of the Laguerre and Jacobi polynomials |
著者: | Odake, S. Sasaki, R. |
著者名の別形: | 佐々木, 隆 |
発行日: | 14-May-2010 |
出版者: | American Institute of Physics |
誌名: | Journal of Mathematical Physics |
巻: | 51 |
号: | 5 |
論文番号: | 053513 |
抄録: | We provide analytic proofs for the shape invariance of the recently discovered [ Odake and Sasaki, Phys. Lett. B 679, 414 (2009) ] two families of infinitely many exactly solvable one-dimensional quantum mechanical potentials. These potentials are obtained by deforming the well-known radial oscillator potential or the Darboux–Pöschl–Teller potential by a degree ℓ (ℓ = 1,2,…) eigenpolynomial. The shape invariance conditions are attributed to new polynomial identities of degree 3ℓ involving cubic products of the Laguerre or Jacobi polynomials. These identities are proved elementarily by combining simple identities. |
著作権等: | © 2010 American Institute of Physics |
URI: | http://hdl.handle.net/2433/128858 |
DOI(出版社版): | 10.1063/1.3371248 |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。