Downloads: 379

Files in This Item:
File Description SizeFormat 
j.ces.2010.08.013.pdf580.5 kBAdobe PDFView/Open
Title: Optimization methodology of operation of orifice-shaped micromixer based on micro-jet concept
Authors: Matsuyama, Kazuo
Mine, Koji
Kubo, Hideaki
Aoki, Nobuaki
Mae, Kazuhiro  kyouindb  KAKEN_id
Author's alias: 前, 一廣
Keywords: Micromixer
Channel geometry
Energy dissipation
Issue Date: 15-Nov-2010
Publisher: Elsevier Ltd
Journal title: Chemical Engineering Science
Volume: 65
Issue: 22
Start page: 5912
End page: 5920
Abstract: To establish an optimization methodology for the emulsification process in microchannels, we have investigated the relationship between the channel geometry of micromixers and the size of the formed droplets. We focus the channel geometry of orifice including the sudden contraction and expansion of the flow. The experimental results indicate that the channel geometry is effective in producing fine droplets, and that the mean droplet diameter is predicted on the basis of the pressure drop due to convection and the energy dissipation rate in the mixer chamber irrespective of the orifice geometry. In the orifice-shaped micromixer, the kinetic energy given to a fluid by contraction is dissipated within the order of milliseconds by the formation of a jet flow of the order of several hundreds of micrometers; we have named this jet “micro-jet.” On the basis of this mechanism, the energy dissipation rate in a micro-jet, εjet, is quantified. The mean droplet diameter is proportional to View the MathML source irrespective of the channel geometry of the mixer. Using this formulation, we have integrated the geometric parameters of the orifice and the physical properties of the fluids into the expression of εjet to establish an optimization methodology of the droplet formation in the orifice-shaped micromixer.
Rights: © 2010 Elsevier Ltd
This is not the published version. Please cite only the published version.
DOI(Published Version): 10.1016/j.ces.2010.08.013
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks

Export Format: 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.