このアイテムのアクセス数: 405

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
kxp047.pdf458.63 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorNoma, Hisashien
dc.contributor.authorMatsui, Shigeyukien
dc.contributor.authorOmori, Takashien
dc.contributor.authorSato, Tosiyaen
dc.contributor.alternative野間, 久史ja
dc.date.accessioned2011-04-21T01:45:38Z-
dc.date.available2011-04-21T01:45:38Z-
dc.date.issued2010-04-
dc.identifier.issn1468-4357-
dc.identifier.urihttp://hdl.handle.net/2433/139478-
dc.description.abstractThe main purpose of microarray studies is screening to identify differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing or ranking genes is a relevant statistical task in microarray studies. In this article, we develop 3 empirical Bayes methods for gene ranking on the basis of differential expression, using hierarchical mixture models. These methods are based on (i) minimizing mean squared errors of estimation for parameters, (ii) minimizing mean squared errors of estimation for ranks of parameters, and (iii) maximizing sensitivity in selecting prespecified numbers of differential genes, with the largest effect. Our methods incorporate the mixture structures of differential and nondifferential components in empirical Bayes models to allow information borrowing across differential genes, with separation from nuisance, nondifferential genes. The accuracy of our ranking methods is compared with that of conventional methods through simulation studies. An application to a clinical study for breast cancer is provided.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherOxford University Pressen
dc.rights© The Author 2009. Published by Oxford University Press.en
dc.rights許諾条件により本文は2011-05-01に公開ja
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.rightsThis is not the published version. Please cite only the published version.en
dc.subjectEmpirical Bayesen
dc.subjectGene expressionen
dc.subjectHierarchical mixture modelsen
dc.subjectMicroarraysen
dc.subjectRanking and selectionen
dc.subject.meshAlgorithmsen
dc.subject.meshBayes Theoremen
dc.subject.meshBiometry/methodsen
dc.subject.meshBreast Neoplasms/diagnosisen
dc.subject.meshBreast Neoplasms/metabolismen
dc.subject.meshComputer Simulationen
dc.subject.meshDown-Regulation/geneticsen
dc.subject.meshFemaleen
dc.subject.meshGene Expression Profiling/statistics & numerical dataen
dc.subject.meshHumansen
dc.subject.meshModels, Statisticalen
dc.subject.meshOligonucleotide Array Sequence Analysis/statistics & numerical dataen
dc.subject.meshPrognosisen
dc.subject.meshRecurrenceen
dc.subject.meshSensitivity and Specificityen
dc.subject.meshUp-Regulation/geneticsen
dc.titleBayesian ranking and selection methods using hierarchical mixture models in microarray studies.en
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA1185180X-
dc.identifier.jtitleBiostatisticsen
dc.identifier.volume11-
dc.identifier.issue2-
dc.identifier.spage281-
dc.identifier.epage289-
dc.relation.doi10.1093/biostatistics/kxp047-
dc.textversionauthor-
dc.startdate.bitstreamsavailable2011-05-01-
dc.identifier.pmid19946026-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。