ダウンロード数: 274

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
1.3691262.pdf797.19 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTakata, Shigeruen
dc.contributor.authorAoki, Kazuoen
dc.contributor.authorHattori, Masanarien
dc.contributor.authorHadjiconstantinou, Nicolas G.en
dc.date.accessioned2012-11-02T06:07:21Z-
dc.date.available2012-11-02T06:07:21Z-
dc.date.issued2012-03-
dc.identifier.issn1070-6631-
dc.identifier.urihttp://hdl.handle.net/2433/160670-
dc.description.abstractThe behavior of a slightly rarefied monatomic gas between two parallel plates whose temperature grows slowly and linearly in time is investigated on the basis of the kinetic theory of gases. This problem is shown to be equivalent to a boundary-value problem of the steady linearized Boltzmann equation describing a rarefied gas subject to constant volumetric heating. The latter has been recently studied by Radtke, Hadjiconstantinou, Takata, and Aoki (RHTA) as a means of extracting the second-order temperature jump coefficient. This correspondence between the two problems gives a natural interpretation to the volumetric heating source and explains why the second-order temperature jump observed by RHTA is not covered by the general theory of slip flow for steady problems. A systematic asymptotic analysis of the time-dependent problem for small Knudsen numbers is carried out and the complete fluid-dynamic description, as well as the related half-space problems that determine the structure of the Knudsen layer and the coefficients of temperature jump, are obtained. Finally, a numerical solution is presented for both the Bhatnagar-Gross-Krook model and hard-sphere molecules. The jump coefficient is also calculated by the use of a symmetry relation; excellent agreement is found with the result of the numerical computation. The asymptotic solution and associated second-order jump coefficient obtained in the present paper agree well with the results by RHTA that are obtained by a low variance stochastic method.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Institute of Physicsen
dc.rightsCopyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in PHYSICS OF FLUIDS 24, 032002 (2012) and may be found at http://link.aip.org/link/?phf/24/032002en
dc.subjectBoltzmann equationen
dc.subjectboundary-value problemsen
dc.subjectkinetic theoryen
dc.subjectKnudsen flowen
dc.subjectslip flowen
dc.subjectstochastic processesen
dc.titleParabolic temperature profile and second-order temperature jump of a slightly rarefied gas in an unsteady two-surface problemen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA10986202-
dc.identifier.jtitlePHYSICS OF FLUIDSen
dc.identifier.volume24-
dc.identifier.issue3-
dc.relation.doi10.1063/1.3691262-
dc.textversionpublisher-
dc.identifier.artnum032002-
dc.relation.urlhttp://link.aip.org/link/?phf/24/032002-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。