ダウンロード数: 227

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
journal.pone.0048699.pdf3.76 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorNagata, Shogoen
dc.contributor.authorHirano, Kunioen
dc.contributor.authorKanemori, Micheleen
dc.contributor.authorSun, Liang-Tsoen
dc.contributor.authorTada, Takashien
dc.contributor.alternative多田, 高ja
dc.date.accessioned2012-12-04T04:42:31Z-
dc.date.available2012-12-04T04:42:31Z-
dc.date.issued2012-11-08-
dc.identifier.issn1932-6203-
dc.identifier.urihttp://hdl.handle.net/2433/162958-
dc.description.abstractHuman induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC) lines through re-plating followed by embryoid body formation and serial transplantation. iCSCs shared the expression of pluripotent marker genes with iPSCs, except for REX1 and LIN28, while exhibited the expression of somatic marker genes EMP1 and PPARγ. iESCs and iCSCs could generate teratomas with high efficiency by implantation into immunodeficient mice. The second iCSCs isolated from dissociated cells of teratoma from the first iCSCs were stably maintained, showing a gene expression profile similar to the first iCSCs. In the first and second iCSCs, transgene-derived Oct4, Sox2, Klf4, and c-Myc were expressed. Comparative global gene expression analyses demonstrated that the first iCSCs were similar to iESCs, and clearly different from human iPSCs and somatic cells. In iCSCs, gene expression kinetics of the core pluripotency factor and the Myc-related factor were pluripotent type, whereas the polycomb complex factor was somatic type. These findings indicate that pluripotent tumorigenicity can be conferred on somatic cells through up-regulation of the core pluripotency and Myc-related factors, prior to establishment of the iPSC molecular network by full reprogramming through down-regulation of the polycomb complex factor.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Scienceen
dc.rights© 2012 Nagata et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.titleSelf-Renewal and Pluripotency Acquired through Somatic Reprogramming to Human Cancer Stem Cells.en
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePloS oneen
dc.identifier.volume7-
dc.identifier.issue11-
dc.relation.doi10.1371/journal.pone.0048699-
dc.textversionpublisher-
dc.identifier.artnume48699-
dc.identifier.pmid23144933-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。