ダウンロード数: 282

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
neco_a_00341.pdf1.97 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTanaka, Takumaen
dc.contributor.authorAoyagi, Toshioen
dc.contributor.authorKaneko, Takeshien
dc.contributor.alternative田中, 琢真ja
dc.contributor.alternative金子, 武嗣ja
dc.date.accessioned2013-03-21T06:58:06Z-
dc.date.available2013-03-21T06:58:06Z-
dc.date.issued2012-10-
dc.identifier.issn1530-888X-
dc.identifier.urihttp://hdl.handle.net/2433/172238-
dc.description.abstractWe propose a new principle for replicating receptive field properties of neurons in the primary visual cortex. We derive a learning rule for a feedforward network, which maintains a low firing rate for the output neurons (resulting in temporal sparseness) and allows only a small subset of the neurons in the network to fire at any given time (resulting in population sparseness). Our learning rule also sets the firing rates of the output neurons at each time step to near-maximum or near-minimum levels, resulting in neuronal reliability. The learning rule is simple enough to be written in spatially and temporally local forms. After the learning stage is performed using input image patches of natural scenes, output neurons in the model network are found to exhibit simple-cell-like receptive field properties. When the output of these simple-cell-like neurons are input to another model layer using the same learning rule, the second-layer output neurons after learning become less sensitive to the phase of gratings than the simple-cell-like input neurons. In particular, some of the second-layer output neurons become completely phase invariant, owing to the convergence of the connections from first-layer neurons with similar orientation selectivity to second-layer neurons in the model network. We examine the parameter dependencies of the receptive field properties of the model neurons after learning and discuss their biological implications. We also show that the localized learning rule is consistent with experimental results concerning neuronal plasticity and can replicate the receptive fields of simple and complex cells.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMassachusetts Institute of Technology Pressen
dc.rights© 2012 Massachusetts Institute of Technologyen
dc.subject.meshAlgorithmsen
dc.subject.meshAnimalsen
dc.subject.meshHumansen
dc.subject.meshLearningen
dc.subject.meshModels, Neurologicalen
dc.subject.meshNerve Net/physiologyen
dc.subject.meshNeural Networks (Computer)en
dc.subject.meshNeurons/physiologyen
dc.subject.meshReproducibility of Resultsen
dc.subject.meshTime Factorsen
dc.subject.meshVisual Cortex/cytologyen
dc.subject.meshVisual Cortex/physiologyen
dc.subject.meshVisual Fields/physiologyen
dc.subject.meshVisual Pathways/physiologyen
dc.titleReplicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.en
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNeural computationen
dc.identifier.volume24-
dc.identifier.issue10-
dc.identifier.spage2700-
dc.identifier.epage2725-
dc.relation.doi10.1162/NECO_a_00341-
dc.textversionpublisher-
dc.identifier.pmid22845820-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。