このアイテムのアクセス数: 187

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
JDR_8(1)_167.pdf416.95 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTachikawa, Yasutoen
dc.contributor.authorNoh, Seong Jinen
dc.contributor.authorKim, Yeon Suen
dc.contributor.authorShiiba, Michiharuen
dc.contributor.alternative立川, 康人ja
dc.date.accessioned2013-03-26T03:04:38Z-
dc.date.available2013-03-26T03:04:38Z-
dc.date.issued2013-02-
dc.identifier.issn1881-2473-
dc.identifier.urihttp://hdl.handle.net/2433/172457-
dc.description.abstractData assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite their potential, applicable software frameworks for probabilistic approaches and data assimilation are still limited because most hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrologic modeling framework for data assimilation, namely MPI-OHyMoS. While adapting object-oriented features of the original OHyMoS, MPI-OHyMoS allows user to build a probabilistic hydrologic model with data assimilation. In this software framework, sequential data assimilation based on particle filtering is available for any hydrologic models considering various sources of uncertainty originating from input forcing, parameters, and observations. Ensemble simulations are parallelized by a message passing interface (MPI), which can take advantage of high-performance computing (HPC) systems. Structure and implementation processes of data assimilation via MPI-OHyMoS are illustrated using a simple lumped model. We apply this software framework for uncertainty assessment of a distributed hydrologic model in synthetic and real experiment cases. In the synthetic experiment, dual state-parameter updating results in a reasonable estimation of parameters to cover synthetic true within their posterior distributions. In the real experiment, dual updating with identifiable parameters results in a reasonable agreement to the observed hydrograph with reduced uncertainty of parameters.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherFuji Technology Pressen
dc.rights(C) 2013 Fuji Technology Press Co, . Ltd.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.rightsThis is not the published version. Please cite only the published version.en
dc.subjectdata assimilationen
dc.subjectMPI-OHyMoSen
dc.subjecthydrologic modeling frameworken
dc.titleFlood Estimation and Prediction Using Particle Filtersen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Disaster Researchen
dc.identifier.volume8-
dc.identifier.issue1-
dc.identifier.spage167-
dc.identifier.epage168-
dc.textversionauthor-
dc.relation.urlhttp://www.fujipress.jp/JDR/DSSTR00080001.html-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。