このアイテムのアクセス数: 187
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
JDR_8(1)_167.pdf | 416.95 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Tachikawa, Yasuto | en |
dc.contributor.author | Noh, Seong Jin | en |
dc.contributor.author | Kim, Yeon Su | en |
dc.contributor.author | Shiiba, Michiharu | en |
dc.contributor.alternative | 立川, 康人 | ja |
dc.date.accessioned | 2013-03-26T03:04:38Z | - |
dc.date.available | 2013-03-26T03:04:38Z | - |
dc.date.issued | 2013-02 | - |
dc.identifier.issn | 1881-2473 | - |
dc.identifier.uri | http://hdl.handle.net/2433/172457 | - |
dc.description.abstract | Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite their potential, applicable software frameworks for probabilistic approaches and data assimilation are still limited because most hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrologic modeling framework for data assimilation, namely MPI-OHyMoS. While adapting object-oriented features of the original OHyMoS, MPI-OHyMoS allows user to build a probabilistic hydrologic model with data assimilation. In this software framework, sequential data assimilation based on particle filtering is available for any hydrologic models considering various sources of uncertainty originating from input forcing, parameters, and observations. Ensemble simulations are parallelized by a message passing interface (MPI), which can take advantage of high-performance computing (HPC) systems. Structure and implementation processes of data assimilation via MPI-OHyMoS are illustrated using a simple lumped model. We apply this software framework for uncertainty assessment of a distributed hydrologic model in synthetic and real experiment cases. In the synthetic experiment, dual state-parameter updating results in a reasonable estimation of parameters to cover synthetic true within their posterior distributions. In the real experiment, dual updating with identifiable parameters results in a reasonable agreement to the observed hydrograph with reduced uncertainty of parameters. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Fuji Technology Press | en |
dc.rights | (C) 2013 Fuji Technology Press Co, . Ltd. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.subject | data assimilation | en |
dc.subject | MPI-OHyMoS | en |
dc.subject | hydrologic modeling framework | en |
dc.title | Flood Estimation and Prediction Using Particle Filters | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of Disaster Research | en |
dc.identifier.volume | 8 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 167 | - |
dc.identifier.epage | 168 | - |
dc.textversion | author | - |
dc.relation.url | http://www.fujipress.jp/JDR/DSSTR00080001.html | - |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。