このアイテムのアクセス数: 389

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
IDA-130586.pdf656.11 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSugiyama, Mahitoen
dc.contributor.authorYamamoto, Akihiroen
dc.contributor.alternative杉山, 麿人ja
dc.contributor.alternative山本, 章博ja
dc.date.accessioned2013-07-08T00:46:24Z-
dc.date.available2013-07-08T00:46:24Z-
dc.date.issued2013-05-
dc.identifier.issn1088-467X-
dc.identifier.urihttp://hdl.handle.net/2433/175815-
dc.description.abstractWe propose a new approach for semi-supervised learning using closed set lattices, which have been recently used for frequent pattern mining within the framework of the data analysis technique of Formal Concept Analysis (FCA). We present a learning algorithm, called SELF (SEmi-supervised Learning via FCA), which performs as a multiclass classifier and a label ranker for mixed-type data containing both discrete and continuous variables, while only few learning algorithms such as the decision tree-based classifier can directly handle mixed-type data. From both labeled and unlabeled data, SELF constructs a closed set lattice, which is a partially ordered set of data clusters with respect to subset inclusion, via FCA together with discretizing continuous variables, followed by learning classification rules through finding maximal clusters on the lattice. Moreover, it can weight each classification rule using the lattice, which gives a partial order of preference over class labels. We illustrate experimentally the competitive performance of SELF in classification and ranking compared to other learning algorithms using UCI datasets.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherIOS Pressen
dc.rights©2013 IOS Pressen
dc.rightsThis is not the published version. Please cite only the published version.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.subjectSemi-supervised learningen
dc.subjectlabel rankingen
dc.subjectmixed-type dataen
dc.subjectclosed set latticeen
dc.subjectformal concept analysisen
dc.titleSemi-supervised learning on closed set latticesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA1153033X-
dc.identifier.jtitleIntelligent Data Analysisen
dc.identifier.volume17-
dc.identifier.issue3-
dc.identifier.spage399-
dc.identifier.epage421-
dc.relation.doi10.3233/IDA-130586-
dc.textversionauthor-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。