このアイテムのアクセス数: 389
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
IDA-130586.pdf | 656.11 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Sugiyama, Mahito | en |
dc.contributor.author | Yamamoto, Akihiro | en |
dc.contributor.alternative | 杉山, 麿人 | ja |
dc.contributor.alternative | 山本, 章博 | ja |
dc.date.accessioned | 2013-07-08T00:46:24Z | - |
dc.date.available | 2013-07-08T00:46:24Z | - |
dc.date.issued | 2013-05 | - |
dc.identifier.issn | 1088-467X | - |
dc.identifier.uri | http://hdl.handle.net/2433/175815 | - |
dc.description.abstract | We propose a new approach for semi-supervised learning using closed set lattices, which have been recently used for frequent pattern mining within the framework of the data analysis technique of Formal Concept Analysis (FCA). We present a learning algorithm, called SELF (SEmi-supervised Learning via FCA), which performs as a multiclass classifier and a label ranker for mixed-type data containing both discrete and continuous variables, while only few learning algorithms such as the decision tree-based classifier can directly handle mixed-type data. From both labeled and unlabeled data, SELF constructs a closed set lattice, which is a partially ordered set of data clusters with respect to subset inclusion, via FCA together with discretizing continuous variables, followed by learning classification rules through finding maximal clusters on the lattice. Moreover, it can weight each classification rule using the lattice, which gives a partial order of preference over class labels. We illustrate experimentally the competitive performance of SELF in classification and ranking compared to other learning algorithms using UCI datasets. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | IOS Press | en |
dc.rights | ©2013 IOS Press | en |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.subject | Semi-supervised learning | en |
dc.subject | label ranking | en |
dc.subject | mixed-type data | en |
dc.subject | closed set lattice | en |
dc.subject | formal concept analysis | en |
dc.title | Semi-supervised learning on closed set lattices | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.ncid | AA1153033X | - |
dc.identifier.jtitle | Intelligent Data Analysis | en |
dc.identifier.volume | 17 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 399 | - |
dc.identifier.epage | 421 | - |
dc.relation.doi | 10.3233/IDA-130586 | - |
dc.textversion | author | - |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。