このアイテムのアクセス数: 240
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
TSP.2013.2265678.pdf | 2.3 MB | Adobe PDF | 見る/開く |
タイトル: | H^∞-Optimal Fractional Delay Filters |
著者: | Nagahara, Masaaki ![]() Yamamoto, Yutaka ![]() |
著者名の別形: | 永原, 正章 |
キーワード: | Fractional delay filters H^∞ optimization interpolation linear matrix inequality sampled-data systems |
発行日: | Sep-2013 |
出版者: | IEEE |
誌名: | IEEE Transactions on Signal Processing |
巻: | 61 |
号: | 18 |
開始ページ: | 4473 |
終了ページ: | 4480 |
抄録: | Fractional delay filters are digital filters to delay discrete-time signals by a fraction of the sampling period. Since the delay is fractional, the intersample behavior of the original analog signal becomes crucial. In contrast to the conventional designs based on the Shannon sampling theorem with the band-limiting hypothesis, the present paper proposes a new approach based on the modern sampled-data $H^{infty}$ optimization that aims at restoring the intersample behavior beyond the Nyquist frequency. By using the lifting transform or continuous-time blocking the design problem is equivalently reduced to a discrete-time $H^{infty}$ optimization, which can be effectively solved by numerical computation softwares. Moreover, a closed-form solution is obtained under an assumption on the original analog signals. Design examples are given to illustrate the advantage of the proposed method. |
著作権等: | © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 This is not the published version. Please cite only the published version. |
URI: | http://hdl.handle.net/2433/178149 |
DOI(出版社版): | 10.1109/TSP.2013.2265678 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。