このアイテムのアクセス数: 278

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
PhysRevD.88.024041.pdf1.07 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFukuma, Masafumien
dc.contributor.authorSugishita, Sotaroen
dc.contributor.authorSakatani, Yuhoen
dc.contributor.alternative福間, 将文ja
dc.date.accessioned2013-09-03T07:32:59Z-
dc.date.available2013-09-03T07:32:59Z-
dc.date.issued2013-07-23-
dc.identifier.issn1550-7998-
dc.identifier.urihttp://hdl.handle.net/2433/178672-
dc.description.abstractIn a spacetime with no global timelike Killing vector, we do not have a natural choice for the vacuum state of matter fields, which leads to an ambiguity in defining the Feynman propagators. In this paper, taking the vacuum state to be the instantaneous ground state of the Hamiltonian at each moment, we develop a method for calculating wave functions associated with the vacuum and the corresponding in-in and in-out propagators. We apply this method to free scalar field theory in de Sitter space and obtain de Sitter invariant propagators in various coordinate patches. We show that the in-out propagator in the Poincaré patch has a finite massless limit in a de Sitter invariant form. We argue and numerically check that our in-out propagators agree with those obtained by a path integral with the standard iε prescription, and we identify the condition on a foliation of spacetime under which such coincidence can happen for the foliation. We also show that the in-out propagators satisfy Polyakov’s composition law. Several applications of our framework are also discussed.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Physical Societyen
dc.rights© 2013 American Physical Societyen
dc.titlePropagators in de Sitter spaceen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA00773624-
dc.identifier.jtitlePhysical Review Den
dc.identifier.volume88-
dc.identifier.issue2-
dc.relation.doi10.1103/PhysRevD.88.024041-
dc.textversionpublisher-
dc.identifier.artnum024041-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。