このアイテムのアクセス数: 443

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jimo.2014.10.113.pdf211.31 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHirai, Tsuguhitoen
dc.contributor.authorMasuyama, Hiroyukien
dc.contributor.authorKasahara, Shojien
dc.contributor.authorTakahashi, Yutakaen
dc.contributor.alternative平井, 嗣人ja
dc.date.accessioned2014-02-28T00:52:46Z-
dc.date.available2014-02-28T00:52:46Z-
dc.date.issued2014-01-
dc.identifier.issn1547-5816-
dc.identifier.urihttp://hdl.handle.net/2433/182214-
dc.description.abstractIn cloud computing, a large-scale parallel-distributed processing service is provided where a huge task is split into a number of subtasks and those subtasks are processed on a cluster of machines called workers. In such a processing service, a worker which takes a long time for processing a subtask makes the response time long (the issue of stragglers). One of efficient methods to alleviate this issue is to execute the same subtask by another worker in preparation for the slow worker (backup tasks). In this paper, we consider the efficiency of backup tasks. We model the task-scheduling server as a single-server queue, in which the server consists of a number of workers. When a task enters the server, the task is split into subtasks, and each subtask is served by its own worker and an alternative distinct worker. In this processing, we explicitly derive task processing time distributions for the two cases that the subtask processing time of a worker obeys Weibull or Pareto distribution. We compare the mean response time and the total processing time under backup-task scheduling with those under normal scheduling. Numerical examples show that the efficiency of backup-task scheduling significantly depends on workers' processing time distribution.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Institute of Mathematical Sciencesen
dc.rights© 2013 American Institute of Mathematical Sciences.en
dc.rights許諾条件により本文は2015-02-01に公開.ja
dc.rightsThis is not the published version. Please cite only the published version.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.subjectCloud computingen
dc.subjectparallel-distributed processingen
dc.subjecttask schedulingen
dc.subjectbackup tasksen
dc.subjectqueueing analysisen
dc.titlePerformance analysis of large-scale parallel-distributed processing with backup tasks for cloud computingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA11975766-
dc.identifier.jtitleJournal of Industrial and Management Optimizationen
dc.identifier.volume10-
dc.identifier.issue1-
dc.identifier.spage113-
dc.identifier.epage129-
dc.relation.doi10.3934/jimo.2014.10.113-
dc.textversionauthor-
dc.startdate.bitstreamsavailable2015-02-01-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。