このアイテムのアクセス数: 443
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
jimo.2014.10.113.pdf | 211.31 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Hirai, Tsuguhito | en |
dc.contributor.author | Masuyama, Hiroyuki | en |
dc.contributor.author | Kasahara, Shoji | en |
dc.contributor.author | Takahashi, Yutaka | en |
dc.contributor.alternative | 平井, 嗣人 | ja |
dc.date.accessioned | 2014-02-28T00:52:46Z | - |
dc.date.available | 2014-02-28T00:52:46Z | - |
dc.date.issued | 2014-01 | - |
dc.identifier.issn | 1547-5816 | - |
dc.identifier.uri | http://hdl.handle.net/2433/182214 | - |
dc.description.abstract | In cloud computing, a large-scale parallel-distributed processing service is provided where a huge task is split into a number of subtasks and those subtasks are processed on a cluster of machines called workers. In such a processing service, a worker which takes a long time for processing a subtask makes the response time long (the issue of stragglers). One of efficient methods to alleviate this issue is to execute the same subtask by another worker in preparation for the slow worker (backup tasks). In this paper, we consider the efficiency of backup tasks. We model the task-scheduling server as a single-server queue, in which the server consists of a number of workers. When a task enters the server, the task is split into subtasks, and each subtask is served by its own worker and an alternative distinct worker. In this processing, we explicitly derive task processing time distributions for the two cases that the subtask processing time of a worker obeys Weibull or Pareto distribution. We compare the mean response time and the total processing time under backup-task scheduling with those under normal scheduling. Numerical examples show that the efficiency of backup-task scheduling significantly depends on workers' processing time distribution. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | American Institute of Mathematical Sciences | en |
dc.rights | © 2013 American Institute of Mathematical Sciences. | en |
dc.rights | 許諾条件により本文は2015-02-01に公開. | ja |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.subject | Cloud computing | en |
dc.subject | parallel-distributed processing | en |
dc.subject | task scheduling | en |
dc.subject | backup tasks | en |
dc.subject | queueing analysis | en |
dc.title | Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.ncid | AA11975766 | - |
dc.identifier.jtitle | Journal of Industrial and Management Optimization | en |
dc.identifier.volume | 10 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 113 | - |
dc.identifier.epage | 129 | - |
dc.relation.doi | 10.3934/jimo.2014.10.113 | - |
dc.textversion | author | - |
dc.startdate.bitstreamsavailable | 2015-02-01 | - |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。