このアイテムのアクセス数: 594
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.jprocont.2014.01.018.pdf | 1.02 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Ahmad, Iftikhar | en |
dc.contributor.author | Kano, Manabu | en |
dc.contributor.author | Hasebe, Shinji | en |
dc.contributor.author | Kitada, Hiroshi | en |
dc.contributor.author | Murata, Noboru | en |
dc.contributor.alternative | 加納, 学 | ja |
dc.date.accessioned | 2014-05-19T07:23:53Z | - |
dc.date.available | 2014-05-19T07:23:53Z | - |
dc.date.issued | 2014-04 | - |
dc.identifier.issn | 0959-1524 | - |
dc.identifier.uri | http://hdl.handle.net/2433/187099 | - |
dc.description.abstract | To realize stable production in the steel industry, it is important to control molten steel temperature in a continuous casting process. The present work aims to provide a general framework of gray-box modeling and to develop a gray-box model that predicts and controls molten steel temperature in a tundish (TD temp) with high accuracy. Since the adopted first-principle model (physical model) cannot accurately describe uncertainties such as degradation of ladles, their overall heat transfer coefficient, which is a parameter in the first-principle model, is optimized for each past batch separately, then the parameter is modeled as a function of process variables through a statistical modeling method, random forests. Such a model is termed as a serial gray-box model. Prediction errors of the first-principle model or the serial gray-box model can be compensated by using another statistical model; this approach derives a parallel gray-box model or a combined gray-box model. In addition, the developed gray-box models are used to determine the optimal molten steel temperature in the Ruhrstahl–Heraeus degassing process from the target TD temp, since the continuous casting process has no manipulated variable to directly control TD temp. The proposed modeling and control strategy is validated through its application to real operation data at a steel work. The results show that the combined gray-box model achieves the best performance in prediction and control of TD temp and satisfies the requirement for its industrial application. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier Ltd. | en |
dc.rights | © 2014 Elsevier Ltd. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.subject | Gray-box modeling | en |
dc.subject | Model-based control | en |
dc.subject | Steel making process | en |
dc.subject | Soft-sensor | en |
dc.subject | Virtual sensing | en |
dc.title | Gray-box modeling for prediction and control of molten steel temperature in tundish | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.ncid | AA10809987 | - |
dc.identifier.jtitle | Journal of Process Control | en |
dc.identifier.volume | 24 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 375 | - |
dc.identifier.epage | 382 | - |
dc.relation.doi | 10.1016/j.jprocont.2014.01.018 | - |
dc.textversion | author | - |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。